
Lecture 1

Generative Capacity and Natural
Language Last modified 2016/04/28

Formal grammars
An essential property of human language that distinguishes it from other
information-carrying systems (e.g., the system of traffic signs) is its creative as-
pect: it makes “infinite use of finite means” in the sense that it allows infinitely
many ways of combining finitely many basic linguistic units to form arbitrarily
complex expressions. (This property is shared by some artificial “languages” like
programming languages and languages of symbolic logic.) By a grammar we
mean a system of rules whereby words—which we assume to be basic linguistic
units for the sake of simplicity—may be put together to form sentences. A speaker
of a language has a certain grammar internalized in his/her head and uses it to
produce and understand sentences of his/her language. What kind of rule systems
human grammars are is an empirical issue and a subject matter of linguistics.

One way of approaching this question is to study mathematical models of
grammar (formal grammars). Different types of formal grammars (or grammar
formalisms) have different formal properties, which may render them more or
less plausible as models of human grammars. Especially, a certain limitation
in the expressive power or generative capacity of a grammar formalism may be
seen to conflict with facts about certain constructions in some existing natural
language. Such a discovery would then be considered a reason to reject the
grammar formalism in question as a model of human grammar. At the same time,
the grammar formalism would serve the useful purpose of characterizing a certain
property of natural language in mathematically precise terms: “Natural language
goes beyond the expressive power of grammar formalism X.”

There is another way in which the study of grammar formalisms may provide

1–1

important insights into human language. A formalization of grammar as an ab-
stract, mathematical object makes it feasible to devise and study various natural
algorithms for solving problems like recognition, parsing, etc. (This task is very
difficult, if not impossible, when the grammar “formalism” is not precisely de-
fined or is not clearly separated from linguistic hypotheses expressed in terms of
it.) The study of algorithmic aspects of grammar formalisms has the potential to
provide important tools for the empirical study of human sentence comprehension
and production as well as child language acquisition. This is true of research in
sentence comprehension, which has been influenced (to a limited extent) by the
theory of parsing for context-free grammars.

n-gram models
In an n-gram model or (n − 1)-th order Markov process, the probability of an
occurrence of a symbol depends on the sequence of n− 1 preceding symbols. The
statistical structure of English can be approximated by counting the number of
n-tuples of words of each type in a long sample of text. The following examples,
originally from Shannon 1948 and Miller and Selfridge 1950, are cited in Miller
and Chomsky 1963. (The “n-th order approximation” corresponds to the n-gram
model.)
(1.1) First-order approximation (words independent, but with frequencies rep-

resentative of English): REPRESENTING AND SPEEDILY IS AN
GOOD APT OR CAME CAN DIFFERENT NATURAL HERE HE
THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FUR-
NISHES THE LINE MESSAGE HAD BE THESE

(1.2) Second-order word approximation (word-pairs with frequencies repre-
sentative of English): THE HEAD AND IN FRONTAL ATTACK ON
AN ENGLISH WRITER THAT THE CHARACTER OF THIS POINT
IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT
THE TIME OFWHO EVER TOLD THE PROBLEM FOR AN UNEX-
PECTED

(1.3) Third-order word approximation (word-triplets with frequencies repre-
sentative of English): FAMILYWAS LARGE DARK ANIMAL CAME
ROARING DOWN THE MIDDLE OF MY FRIENDS LOVE BOOKS
PASSIONATELY EVERY KISS IS FINE

(1.4) Fifth-order word approximation (word quintuplets with frequencies rep-
resentative of English): ROAD IN THE COUNTRY WAS INSANE
ESPECIALLY IN DREARY ROOMS WHERE THEY HAVE SOME
BOOKS TO BUY FOR STUDYING GREEK

1–2

It is not possible to use an n-gram model to characterize the set of grammatical
sentences of English. For any finite n, there would be ungrammatical sequences
longer than n words that an n-gram model could not reject.

(1.5) The
{
mother
parents

}
of (the father of)k John

{
is
are

}
dead.

For k > (n−4)/3, an n-grammodel cannot correctly capture the number agreement
between mother/parents and is/are in (1.5).

Figure 1.1 is a finite automaton that describes the infinite set of grammatical
sentences in (1.5).

the

mother

of
the

father

of
John

is

dead

parents

of John

are

the

father

of

Figure 1.1: A finite automaton accepting the grammatical sentences in (1.5).

A finite automaton has a finite number of states and arrows connecting pairs
of states. Each arrow is labeled with a symbol. In the automaton in Figure 1.1, the
labels on the arrows are English words, which are treated as atomic symbols. If
you can get from the initial state (indicated by an unlabeled arrow pointing to it)
to the final state (indicated by a double circle) by traversing a sequence of arrows,
then the corresponding sequence of symbols (string) is accepted by the automaton.
The automaton in Figure 1.1 accepts an infinite set of strings of English words, all
of which are grammatical.

The underlying non-stochastic structure of an n-gram model is a finite automa-
ton of a very restricted kind (an (n − 1)-limited automaton) which has a different

1–3

state corresponding to each (n − 1)-gram. In an n-limited automaton, the current
state is determined by the last n symbols that have been scanned.1

An n-limited finite automaton cannot capture a dependency between words
that are more than n words apart. In natural language, there are unbounded
dependencies like the one in (1.5), where words that are dependent on each other
can occur arbitrarily far apart.

Finite automata and regular languages
Formally, a deterministic finite automaton (DFA) is a 5-tupleA = (Q, Σ, δ, q−, F),
where

1. Q is a finite set of states,
2. Σ is a finite set called the input alphabet,
3. δ : Q × Σ → Q is the transition function,2
4. q− ∈ Q is the initial state, and
5. F ⊆ Q is the set of final states.

Let w = a1a2 . . . an be a string over the alphabet Σ . Then A accepts w if there is
a sequence of states r0, r1, . . . , rn in Q with the following conditions:

1. r0 = q−,
2. ri = δ(ri−1, ai) for i = 1, . . . , n,
3. rn ∈ F.

Let L be a language (i.e., set of strings) over Σ (L ⊆ Σ ∗). We say that A
recognizes L if L = { w ∈ Σ ∗ | A accepts w }. A language is called recognizable
or regular if it is recognized by some DFA.

Let A = (Q, Σ, δ, q−, F) be a DFA. It is often useful to define a function
δ̂ : Q × Σ ∗ → Q that extends δ as follows:

δ̂(q, ε) = q,

δ̂(q,wa) = δ(δ̂(q,w), a) for w ∈ Σ ∗, a ∈ Σ .
(1.6)

1The notion of an n-limited automaton appears in Chomsky 1963. It is related to the notion of
a strictly n-testable language of McNaughton and Papert (1971). See Problem 1.1 at the end of
this lecture.

2According to this definition (from Sipser 2012), δ must be a totally defined function. A more
common definition of a DFA allows δ to be a partially defined function (as it is in the example in
Figure 1.1). To turn a DFA under the more liberal definition into one conforming to the present
strict definition, one can add a new “sink” state and define the value of the new transition function
to be that state whenever the value of the old transition function is undefined.

1–4

It is easy to see that A accepts w if and only if δ̂(q−,w) ∈ F.

Exercise 1.1. Show that for every w, u ∈ Σ ∗, we have

δ̂(q,wu) = δ̂(δ̂(q,w), u).

Let L ⊆ Σ ∗. Define a relation 'L ⊆ Σ ∗ × Σ ∗ by

v 'L w if and only if { u | vu ∈ L } = { u | wu ∈ L }.

Then 'L is an equivalence relation that is right-invariant in the sense that

v 'L w implies vu 'L wu for all v,w, u ∈ Σ ∗.

The number of equivalence classes of 'L is called the index of 'L. The following
theorem was originally proved by Myhill (1957) and Nerode (1958):3

Theorem 1.1 (Myhill-Nerode). L is regular if and only if 'L has finite index.

Proof. (⇒). Suppose that L is regular, and L is recognized by a DFA A =
(Q, Σ, δ, q−, F). Let δ̂ : Q × Σ ∗ → Q be the function defined from δ by (1.6).

We claim that δ̂(q−,w) = δ̂(q−, v) implies w 'L v. Since δ̂(q−, x) ∈ Q for all
x ∈ Σ ∗ and Q is finite, it follws from this claim that 'L has finite index.

Suppose δ̂(q−,w) = δ̂(q−, v). Then, using Exercise 1.1, we have

{ u | wu ∈ L } = { u | δ̂(q−,wu) ∈ F }

= { u | δ̂(δ̂(q−,w), u) ∈ F }

= { u | δ̂(δ̂(q−, v), u) ∈ F }

= { u | δ̂(q−, vu) ∈ F }
= { u | vu ∈ L },

so w 'L v. This proves the claim.
(⇐). Suppose that 'L has finite index, and let [w1]'L, . . . , [wn]'L be its

equivalence classes. (For a string w ∈ Σ ∗, [w]'L = { x ∈ Σ ∗ | w 'L x }.) Define
a DFA A = (Q, Σ, δ, q−, F) as follows:

Q = {[w1]'L, . . . , [wn]'L },
δ([wi]'L, a) = [wia]'L for i = 1, . . . , n and a ∈ Σ,

q− = [ε]'L,
F = { [w]'L | w ∈ L }.

3The relation 'L is sometimes called the Myhill-Nerode relation.

1–5

Note that the right-invariance of 'L implies that [v]'L ∈ F if and only if v ∈ L.
Let δ̂ be the function defined from δ by (1.6). We claim that for every w ∈ Σ ∗,
δ̂(q−,w) = [w]'L . This implies that A accepts w if and only if w ∈ L, i.e., A
recognizes L.

We show the claim by induction on the length of w. If w = ε, then
δ̂(q−,w) = q− = [ε]'L , so the claim holds. If w = w′a (a ∈ Σ), then
δ̂(q−,w′a) = δ(δ̂(q−,w′), a) = δ([w′]'L, a), by induction hypothesis. Let i be the
number such that [wi]'L = [w′]'L . Then δ([w′]'L, a) = δ([wi]'L, a) = [wia]'L .
Since [wi]'L = [w′]'L , wi 'L w′, and by the right-invariance of 'L, wia 'L w′a.
Therefore, [wia]'L = [w′a]'L , and we have shown δ̂(q−,w′a) = [w′a]'L . �

By Theorem 1.1, it is easy to see that L1 = { a
nbn | n ≥ 0 } is not regular

because 'L1 has infinite index; for each n ≥ 0, {an} is an equivalence class of 'L1 .

Exercise 1.2. List all the equivalence classes of 'L1 .

By a similar reasoning, we can show that the set of grammatical strings of
English words is not regular. Consider the following string of words:

(1.7) people people people see see see

This is a grammatical, albeit awkward and hard to process, sentence of English. It
has the following structure:

(1.8) people [people [people see] see] see

The first and second occurrences of see are transitive verbs, while the third is an
intransitive verb, and the two bracketed substrings are relative clauses modifying
the immediately preceding occurrence of people. Observe that a string of the form

(1.9) peoplem seen

is grammatical if and only if m = n. So peoplei and people j belong to different
equivalence classes if i , j. ByTheorem1.1, thismeans that the set of grammatical
strings of English words is not regular.

Even though the acceptability of peoplen seen quickly deteriorates as n grows,
the kind of nested structure that (1.8) exemplifies is not uncommon in English (see
Hudson 1996 for various examples).

(1.10) A book [that some Italian [I’ve never heard of] wrote] will be published
soon by MIT Press.

(1.11) The policies [that the students [I know] object to most strenuously] are
those pertaining to smoking.

1–6

(1.12) Anyone1 who feels that if2 so-many3 more4 students5 who we6 haven’t6
actually admitted are5 sitting in on the course than4 ones we have that3
the room had to be changed, then2 probably auditors will have to be
excluded, is1 likely to agree that the curriculum needs revision.

The example (1.12) is from Chomsky and Miller 1963.
Chomsky (1956) shows English to be non-regular using the following con-

structions:

(1.13) a. If S1, then S2

b. Either S3 or S4

c. The man who said that S5 is arriving today

Chomsky’s argument is not mathematically precise (Daly 1974), but it is easy to
use (1.13) to show that English is not regular.

Exercise 1.3. Let L ⊆ Σ ∗. Define a relation ≡L ⊆ Σ ∗ × Σ ∗ by

v ≡L w if and only if { (x, y) | xvy ∈ L } = { (x, y) | xwy ∈ L }.

Then ≡L is a congruence relation on Σ ∗ in the sense that ≡L is an equivalence
relation and v ≡L v′ and w ≡L w′ imply vw ≡L v′w′. The relation ≡L is known
as the syntactic congruence of L. The set of equivalence classes of ≡L (or more
precisely, the quotient monoid Σ ∗/≡L) is called the syntactic monoid of L and is
denoted Syn(L). Show that L is regular if and only if Syn(L) is finite.

Context-free grammars and context-free languages
The non-regular language L = { anbn | n ≥ 0 } can be described by a context-free
grammar with the following set of productions:

(1.14) S → ε
S → ASB

A→ a
B → b

The string a3b3 is generated by this grammar with the following derivation:

S ⇒ ASB ⇒ aSB ⇒ aASBB ⇒ aaSBB ⇒ aaASBBB ⇒ aaaSBBB
⇒ aaaBBB ⇒ aaabBB ⇒ aaabbB ⇒ aaabbb.

Each step of the derivation is sanctioned by one of the productions of the grammar.
Formally, a context-free grammar (CFG) is a 4-tuple G = (N, Σ, P, S), where

1. N is a finite set of symbols called nonterminals,

1–7

2. Σ is a finite set of symbols called terminals, disjoint from N ,
3. P is a finite set of productions (or rules), with each production being of the

form A→ α, where A ∈ N and α ∈ (N ∪ Σ)∗, and
4. S is a member of N called the start symbol.

For β, γ ∈ (N ∪ Σ)∗, we write β ⇒G γ if there are a production A → α in
P and some β1, β2 ∈ (N ∪ Σ)∗ such that β = β1 Aβ2 and γ = β1αβ2. We say
that G generates a string w ∈ Σ ∗ if S ⇒∗G w. (The relation ⇒∗G is the reflexive
transitive closure of the relation⇒G.) The set of terminal strings generated by G
is the language generated by G and is written L(G). A language is called context-
free if it is generated by some context-free grammar. All regular languages are
context-free, but not vice versa.

Given a CFG G, a parse tree (or derivation tree) of G is a labeled ordered tree
satisfying the following conditions:

1. each non-leaf node is labeled by a nonterminal,
2. each leaf node is labeled by a terminal or ε,
3. the root node is labeled by the start symbol,
4. for each non-leaf node labeled by a nonterminal A, there is some production

A→ α such that α is the string obtained by reading the labels of its children
nodes, from left to right, and

5. any leaf node labeled by ε has no sibling.

The yield of a parse tree is the terminal string obtained by reading the labels of the
leaf nodes from left to right. An example of a parse tree of the grammar in (1.14)
is in Figure 1.2.

S

B

b

S

B

b

S

B

b

εA

a

A

a

A

a

Figure 1.2: A parse tree whose yield is aaabbb.

The language generated by a CFGG = (N, Σ, P, S) can be defined alternatively
in terms of parse trees:

L(G) = { w ∈ Σ ∗ | w is the yield of some parse tree of G }.

1–8

The following grammar generates a small fragment of English. Figure 1.3
contains two parse trees of this grammar.4

(1.15) S→ NP VP
NP→ Det N1
N1→ N
N1→ N1 RC
VP→ Vt NP
RC→ C VP

RC→ C S/NP
S/NP→ NP VP/NP
VP/NP→ Vt
Det→ the
N→ dog
N→ cat

N→ rat
N→ cheese
Vt→ chased
Vt→ bit
Vt→ ate
C→ that

S

NP

Det

the

N1

N1

N

rat

RC

C

that

S/NP

NP

Det

the

N1

N1

N

cat

RC

C

that

S/NP

NP

Det

the

N1

N

dog

VP/NP

Vt

chased

VP/NP

Vt

bit

VP

Vt

ate

NP

Det

the

N1

N

cheese

S

NP

Det

the

N1

N

dog

VP

Vt

chased

NP

Det

the

N1

N1

N

cat

RC

C

that

VP

Vt

bit

NP

Det

the

N1

N1

N

rat

RC

C

that

VP

Vt

ate

NP

Det

the

N1

N

cheese

Figure 1.3: Center-embedded and right-branching structures.

4The names of nonterminals here are mostly abbreviations of standard grammatical categories,
like, Sentence, Noun Phrase, Verb Phrase, etc. Nonterminals of the form X/Y stands for an X that
has a Y hole in it. This notation comes from Gazdar et al. 1985.

1–9

Exercise 1.4. Consider the following grammar:

(1.16) S→ NP VP
NP→ N1
N1→ N
VP→ Vt NP
VP→ Vi
N1→ N1 RC

RC→ S/NP
S/NP→ NP VP/NP
VP/NP→ Vt
N→ people
Vt→ see
Vi→ see

The following are among the strings generated by this grammar. Draw a parse tree
for each string.

• people people people see see see

• people people see see people people see

• people people see people see see people people see people see

ACFG G is said to be self-embedding if it has a nonterminal A such that A⇒∗G
vAw for some non-empty strings of terminals v,w. Notice that the grammars in
(1.14) and (1.15) are self-embedding.

Theorem 1.2 (Chomsky). Every context-free grammar that is not self-embedding
generates a regular language.

This theorem was first proved by Chomsky (1959). See also Bar-Hillel et al. 1961,
Chomsky 1963, Nederhof 2000, and Problems 2.2 and 2.3 at the end of Lecture 2.

Self-embedded structures like those in (1.10) and (1.11) are abundant in natural
language. It is much harder to find evidence that natural language goes beyond the
expressive power of context-free grammars (see Pullum and Gazdar 1982 for the
history of failed attempts). Cross-serial dependencies found in the Zürich dialect
of Swiss German provide one such piece of evidence (Huybregts 1984, Shieber
1985).

A crucial fact about Swiss German is that like standard German, it marks verb
objects with different case (dative or accusative) depending on the type of the verb.
The following examples are from Shieber 1985. They are all subordinate clauses
and should be envisaged as preceded by the string “de Jan säit, dass” (“Jan says
that”) or something similar to form a complete sentence. The asterisk * in front of
an example indicates ungrammaticality.

(1.17) mer em Hans es huus hälfed aastriiche
we Hans-DAT the house-ACC helped paint
‘we helped Hans paint the house’

1–10

(1.18) mer de Hans es huus lönd aastriiche
we Hans-ACC the house-ACC let paint
‘we let Hans paint the house’

(1.19) *mer em Hans es huus lönd aastriiche
we Hans-DAT the house-ACC let paint
‘we let Hans paint the house’

(1.20) *mer de Hans em huus lönd aastriiche
we Hans-ACC the house-DAT let paint
‘we let Hans paint the house’

(1.21) mer d’chind em Hans es huus lönd hälfe aastriiche
we the children-ACC Hans-DAT the house-ACC let help paint
‘we let the children help Hans paint the house’

(1.22) *mer d’chind de Hans es huus lönd hälfe aastriiche
we the children-ACC Hans-ACC the house-ACC let help paint
‘we let the children help Hans paint the house’

(1.23) mer em Hans es huus haend wele hälfe aastriiche
we Hans-DAT the house-ACC have wanted help paint
‘we have wanted to help Hans paint the house’

(1.24) mer d’chind em Hans es huus haend wele laa hälfe
we the children-ACC Hans-DAT the houes-ACC have wanted let help
aastriiche
paint
‘we have wanted to let the children help Hans paint the house’

Notice that in all these examples, the object noun phrases all precede the verbs,
and the order in which the verbs appear corresponds to the order in which their
objects appear. This configuration is called “cross-serial”, because if we draw
lines connecting corresponding pairs of noun phrases and verbs, the lines do not
nest but rather cross each other.

(1.17) mer em Hans es huus hälfed aastriiche

we Hans-DAT the house-ACC let paint

(1.21) mer d’chind em Hans es huus lönd hälfe aastriiche

we the children-ACC Hans-DAT the house-ACC let help paint

1–11

This is by no means the only possible word order in this construction; Swiss
German allows nested configurations as well, just like standard German, and it is
also possible to have an object noun phrase follow a verb (but not the one whose
object it is). The most important thing here is that the cross-serial word order
seems to be generally available.

The following sentence is grammatical if and only if k = m and l = n.

(1.25) De Jan säit, dass mer (d’chind)k (em Hans)l es huus haend wele laam

hälfen aastriiche.

The following theoremwas first proved by Bar-Hillel et al. (1961) and is known
as the pumping lemma (see, e.g., Sipser 2012 for proof):

Theorem 1.3 (Bar-Hillel, Perles, and Shamir). Let L be a context-free language.
Then there is a natural number p such that for for every string z ∈ L with |z | ≥ p,
there are strings u, v,w, x, y satisfying the following conditions:

1. z = uvwxy,
2. |vx | ≥ 1,
3. |vwx | ≤ p, and
4. uvnwxny ∈ L for all n ≥ 0.

Exercise 1.5. Use the pumping lemma to show that the following languages are
non-context-free:

• { xx | x ∈ {a, b}∗ }

• { anbncn | n ≥ 0 }
• { ambnambn | m, n ≥ 0 }

The following theorems say that the class of context-free languages is closed
under homomorphism and intersection with regular sets. With the help of these
theorems, we can show that the set of grammatical word strings of Swiss German
is not context-free.

A mapping h from Σ ∗1 to Σ ∗2 is a homomorphism if h(xy) = h(x)h(y) for all
x, y ∈ Σ ∗1 . A homomorphism is completely determined by the values it takes on
strings of length 1 (i.e., symbols).

Theorem 1.4. Let L ⊆ Σ ∗1 be a context-free language. If h : Σ ∗1 → Σ ∗2 is a
homomorphism, then h(L) = { h(w) | w ∈ L } is a context-free language.

Proof. Let G = (N, Σ1, P, S) be a CFG generating L. Extend h to a function from
(N ∪ Σ1)∗ → (N ∪ Σ2)∗ by setting h(A) = A for all A ∈ N . Let

P′ = { A→ h(α) | A→ α ∈ P }.

Then it is easy to show that G′ = (N, Σ2, P′, S) generates h(L). �

1–12

Theorem 1.5. If L is a context-free language and R a regular language, then
L ∩ R is a context-free language.

Proof. Let G = (N, Σ, P, S) be a CFG generating L and A = (Q, Σ, δ, q−, F) be
a DFA recognizing R. Define a CFG G′ = (N ′ ∪ {S′}, Σ ′, P′, S′) by

N′ = { A(q,r) | A ∈ N and q, r ∈ Q },

Σ ′ = { a(q,r) | a ∈ Σ , q, r ∈ Q, and δ(q, a) = r },

P′ = { S′ → S(q−,r) | r ∈ F } ∪
{ A(q,r) → X (r0,r1)

1 . . . X (rn−1,rn)
n | A→ X1 . . . Xn ∈ P, q = r0, r = rn, and

X (ri−1,ri)
i ∈ N ′ ∪ Σ ′ for i = 1, . . . , n }.

Then we can show

L(G′) = { a(r0,r1)
1 . . . a(rn−1,rn)

n | a1 . . . an ∈ L, r0 = q−, rn ∈ F, and
δ(ri−1, ai) = ri for i = 1, . . . , n }.

Let h : Σ ′∗ → Σ ∗ be the homomorphism such that h(a(q,r)) = a for all a(q,r) ∈ Σ ′.
Then h(L(G′)) = L ∩ R, which is a context-free language by Theorem 1.4. �

Exercise 1.6. Use Theorems 1.3, 1.4, and 1.5 to show that the set of grammatical
word strings of Swiss German is not context-free.

A class C of languages is called a rational cone if it is closed under homo-
morphism, inverse homomorphism (i.e., L ∈ C implies h−1(L) = { w | h(w) ∈
L } ∈ C for any homomorphism h), and intersection with regular sets. The regular
languages and the context-free languages each constitute a rational cone. Most
important classes of languages we will consider are rational cones.

Problems
1.1. ADFAA = (Q, Σ, δ, q−, F) is n-limited if and only if it satisfies the following
conditions:

• There is a state q∞ ∈ Q − F such that δ(q∞, a) = q∞ for every a ∈ Σ ; and
• For all q, q′ ∈ Q and for all x ∈ Σ n, δ̂(q, x) , q∞ and δ̂(q′, x) , q∞ implies
δ̂(q, x) = δ̂(q′, x).

Let x ∈ Σ nΣ ∗. Define

αn(x) = the prefix of x of length n,
ωn(x) = the suffix of x of length n,

1–13

βn(x) = { y ∈ Σ n | uyv = x for some u, v ∈ Σ+ }.

A language L ∈ Σ ∗ is strictly n-testable if there exist subsets α,ω, β of Σ n such
that for every x ∈ Σ nΣ ∗, x ∈ L if and only if αn(x) ∈ α, ωn(x) ∈ ω, and
βn(x) ⊆ β.

(a) Let # be a symbol not in Σ . Show that for every L ∈ Σ ∗, L = L(A) for
some n-limited DFA A if and only if #L# is strictly (n + 1)-testable.

(b) Show that the class of strictly n-testable languages is closed under intersec-
tion, but not union or complementation.

(c) Show that every regular language is a homomorphic image of a strictly
2-testable language.

1.2. The “if” direction of Theorem 1.1 constructed a DFA out of a language L that
has finite index.

(a) Show that the DFA constructed in the “if” direction of Theorem 1.1 is a
minimal DFA (DFA with the smallest number of states) recognizing L.

(b) Show that up to isomorphism, each regular language has a unique minimal
DFA recognizing it.

1.3. An equivalence relation' on Σ ∗ is right-invariant if for all x, y, u ∈ Σ ∗, x ' y

implies xu ' yu. A state q of a DFA A = (Q, Σ, δ, q−, F) is reachable if there is
some x ∈ Σ ∗ such that δ̂(q−, x) = q. Show that up to isomorphism, DFAs whose
input alphabet is Σ and whose states are all reachable correspond one-to-one with
the pairs (', E) such that ' is a right-invariant equivalence relation on Σ ∗ of finite
index and E is a subset of its equivalence classes.

1.4. A monoid is a set M equipped with an associative binary operation ◦ : M ×
M → M and an identity 1 ∈ M satisfying 1 ◦ x = x ◦ 1 = x for all x ∈ M . The
set Σ ∗ of all finite strings over an alphabet Σ is a monoid, with concatenation
as monoid operation and ε as identity. (This is called the free monoid generated
by Σ .) If (M, ◦M, 1M) and (N, ◦N, 1N) are monoids, a mapping h : M → N is
a monoid homomorphism if h(1M) = 1N and h(x ◦M y) = h(x) ◦N h(y) for all
x, y ∈ M .

A finite monoid M recognizes a language L ⊆ Σ ∗ if there is a monoid homo-
morphism h : Σ ∗ → M and a subset M′ of M such that L = h−1(M′). Prove that
L ⊆ Σ ∗ is recognized by some finite monoid if and only if it is a regular language.

1.5. If E is a set, a transformation monoid on E is a monoid (M, ◦, 1), where M
is a set of functions from E to E, ◦ is the composition operation, and 1 is the
identity function on M . The transition monoid of a DFA A = (Q, Σ, δ, q−, F) is
the transformation monoid generated by { [a] | a ∈ Σ }, where [a] is the function
from Q to Q given by [a](q) = δ(q, a).

1–14

(a) Show that if L is recognized by A, then L is recognized by its transition
monoid.

(b) Show that if A is a minimal DFA for L, then the transition monoid of A is
isomorphic to the syntactic monoid of L.

(See Propositions 3.18 and 4.27 of Pin (in prepration).)

1.6. A CFG is ambiguous if it generates some string with more than one parse
tree.

(a) Show that the grammar in (1.15) is ambigous.
(b) Write an unambiguous grammar that generates the same language as the

grammar in (1.15).

1.7. Consider the grammar (1.16) given in Exercise 1.4. Show that the set

{ w | NP⇒∗ people w }

coincides with the Dyck language over { people, see }, i.e., the language defined
by the following context-free grammar:5

S → ε | people S see S.

1.8. See Problem 1.4 for the definitions of a monoid and of recognition by a finite
monoid.

1. Let (M, ◦M, 1M) be a finite monoid, and let h : Σ ∗ → M be a monoid
homomorphism. Prove that for every CFG G = (N, Σ, P, S), there is a CFG
G′ = (N ′, Σ, P′, S′) that satisfies the following condition:

(a) L(G) = L(G′), and
(b) for every A ∈ N′− {S′} and w,w′ ∈ Σ ∗, A⇒∗G′ w and A⇒∗G′ w

′ imply
h(w) = h(w′).

2. Give an alternative proof of Theorem 1.5 using a finite monoid recognizing
R instead of a DFA for R.

1.9. Prove the following weak form of Ogden’s lemma for context-free grammars
(Ogden 1968):

Let G = (N, Σ, P, S) be a CFG. There is a natural number p such that for every
string z ∈ L(G) and J ⊆ [1, |z |], if |J | ≥ p, then z can be written as z = uvwxy so
that

5Vertical bars are often used to combine multiple productions that share the same left-hand
side. Thus, A→ α | β abbreviates two productions A→ α and A→ β.

1–15

1. at least one of the following sets is non-empty:

J ∩ [|u| + 1, |uv |],
J ∩ [|uvw | + 1, |uvwx |].

2. for some A ∈ N , we have

S ⇒∗G uAy,
A⇒∗G vAx,
A⇒∗G w.

(As a consequence, uvnwxny ∈ L(G) for all n ≥ 0.)

1.10. Show that L = { ambmcn | m, n ≥ 0 } ∪ { ambncn | m, n ≥ 0 } is an inherently
ambiguous context-free language. In particular, every CFG G such that L(G) = L
allows two distinct parse trees for some string of the form anbncn.

1.11. We refer to the number of nodes in a parse tree T as the size of T . If G is
a CFG and z ∈ L(G), we write dcG (z) for the size of the smallest parse tree of G
whose yield is z.

(a) Let G be a CFG without ε-productions. Show that for every z ∈ L(G), it
holds that dcG (z) ≤ (3n+1) · |z | −n, where n is the number of nonterminals
of G.

(b) Show that for every CFG G, there exist numbers a, b (dependent on G) such
that dcG (z) ≤ a |z | + b for every z ∈ L(G).

(c) How do a and b depend on G? (The pair (a, b) is known as the derivational
complexity of G (Sippu 1982).)

1.12. Consider the following one-person game. You are given a finite number
of boxes, each of which can contain, at any point in time, at most one string (of
arbitrary length) over an alphabet Σ . One of the boxes, call it S, is designated as
the goal box. You are also given a finite number of instructions of the form:

A(α) ← B1(x1), . . . , Bn(xn),

where n ∈ N, A, B1, . . . , Bn are names of boxes, x1, . . . , xn are pairwise distinct
variables, and α is a string in Σ ∗x1Σ

∗ . . . Σ ∗xnΣ
∗. The interpretation of the rule

is as follows. When boxes B1, . . . , Bn hold strings w1, . . . ,wn, respectively, you
are allowed to put the string α[x1 := w1, . . . , xn := wn] into box A, replacing
any string previously in A. The special case of n = 0 means that you are always
allowed to throw α ∈ Σ ∗ into A (discarding any string already in A). You start the

1–16

game with each box being empty and a particular goal string w ∈ Σ ∗ singled out.
When you reach a situation where w is in the goal box S, you win the game.

Suppose that the boxes and the instructions are fixed. Show that the set

{ w | you can win the game with w as goal string }

is a context-free language. Hint: See Ginsburg and Spanier 1968.

1.13. We say that a language L ⊆ Σ ∗ has the shrinking property if for any positive
integer m, there exists a k > m such that every string w ∈ L with |w | ≥ k can be
written as w = w1 . . .wr in such a way that the following conditions hold:

• m < r ≤ k,
• wi , ε for i = 1, . . . , r , and
• every choice of m elements from {1, . . . , r } is included in some {i1, i2, . . . , it }

such that t < r , 1 ≤ i1 < i2 < · · · < it ≤ r , and wi1wi2 . . .wit ∈ L.

(a) Show that every regular language has the shrinking property. (Hint: Let
k = (m + 1) |Q |, where Q is the set of states of a DFA recognizing L.)

(b) Show that every context-free language has the shrinking property.

(Gilman (1996) proves that every indexed language has the shrinking property.)

References
Bar-Hillel, Y., M. Perles, and E. Shamir. 1961. On formal properties of simple
phrase structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und
Kommunikationsforschung 14(2):143–172.

Chomsky, Noam. 1956. Three models for the description of language. IRE
Transactions on Information Theory 2(3):113–124.

Chomsky, Noam. 1959. On certain formal properties of grammars. Information
and Control 2(2):137–167.

Chomsky, Noam. 1963. Formal properties of grammars. In R. D. Luce, R. R.
Bush, and E. Galanter, eds., Handbook of Mathematical Psychology, Volume II,
pages 323–418. New York: John Wiley and Sons.

Chomsky, Noam and George A. Miller. 1963. Introduction to the formal analysis
of natural languages. In R. D. Luce, R. R. Bush, and E. Galanter, eds.,Handbook
of Mathematical Psychology, Volume II, pages 269–321. NewYork: JohnWiley
and Sons.

1–17

Daly, RichardTimon. 1974. Application of theMathematical Theory of Linguistics.
The Hague: Mouton.

Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. 1985. Gener-
alized Phrase Structure Grammar. Oxford: Blackwell.

Gilman, Robert H. 1996. A shrinking lemma for indexed languages. Theoretical
Computer Science 163:277–281.

Ginsburg, Seymour and Edwin H. Spanier. 1968. Derivation-bounded languages.
Journal of Computer and System Sciences 2:228–250.

Hudson, Richard. 1996. The difficulty of (so-called) self-embedded structures.
In P. Backley and J. Harris, eds., UCL Working Papers in Linguistics 8, pages
283–314. University College London Department of Phonetics and Linguistics.

Huybregts, Riny. 1984. The weak inadequacy of context free phrase structure
grammars. In G. J. de Haan, M. Trommelen, and W. Zonneveld, eds., Van
Periferie naar Kern, pages 81–90. Dordrecht: Foris Publications.

McNaughton, Robert and Seymour A. Papert. 1971. Counter-Free Automata.
Cambridge, Mass.: MIT Press.

Miller, George A. and Noam Chomsky. 1963. Finitary models of language users.
In R. D. Luce, R. R. Bush, and E. Galanter, eds., Handbook of Mathematical
Psychology, Volume II, pages 419–491. New York: John Wiley and Sons.

Myhill, John. 1957. Finite automata and the representation of events. Wright Air
Development Command Technical Report 57–624:112–137.

Nederhof, Mark-Jan. 2000. Practical experiments with regular approximation of
context-free languages. Computational Linguistics 26(1):17–44.

Nerode, Anil. 1958. Linear automaton transformations. Proceedings of the Amer-
ican Mathematical Society 9(4):541–544.

Ogden, William. 1968. A helpful result for proving inherent ambiguity. Mathe-
matical Systems Theory 2(3):191–194.

Pin, Jean-Éric. in prepration. Mathematical foundations of automata the-
ory. Book draft available at https://www.irif.univ-paris-diderot.fr/
~jep/PDF/MPRI/MPRI.pdf.

Pullum, Geffrey K. and Gerald Gazdar. 1982. Natural languages and context-free
languages. Linguistics and Philosophy 4(4):471–504.

1–18

https://www.irif.univ-paris-diderot.fr/~jep/PDF/MPRI/MPRI.pdf
https://www.irif.univ-paris-diderot.fr/~jep/PDF/MPRI/MPRI.pdf

Shieber, StuartM. 1985. Evidence against the context-freeness of natural language.
Linguistics and Philosophy 8(3):333–343.

Sippu, Seppo. 1982. Derivational complexity of context-free grammars. Informa-
tion and Control 53(1–2):52–65.

Sipser, Michael. 2012. Introduction to the Theory of Computation, Third Edition.
Boston: Cengage Learning.

1–19

	Generative Capacity and Natural LanguageLast modified 2016/04/28

