4/27 Mathematical Linguistics

Exercise 2.2, (2.1)

S

Det
 NP

the
N 1 RC

rat that
NP

the N 1
RC

cat that

the
\qquad
S
(
the N
rat
left-corner (arc-eager)
S

S

$$
\begin{aligned}
& A \quad C F G G \text { is self-embedding } \\
& \Leftrightarrow \text { for some nonterminal } A \text { and } x, y \in \Sigma^{*}, \\
& \\
& \qquad \begin{array}{l}
A \neq A y \wedge \\
\\
\qquad \neq \varepsilon \wedge y \neq \varepsilon
\end{array} \\
& \text { Theorem (Chomsky) Let } G \text { be } a C F G . \\
& G \text { is not self-embedding } \Rightarrow L(G) \text { is regular }
\end{aligned}
$$

Important Properties of the Left-Corner Recognizer

- Shift: $(\alpha, a x)+(a \alpha, x)$ provided $\alpha=\sim X \alpha^{\prime}$ for some

$$
\begin{aligned}
& (\alpha, a x) \vdash(a \alpha, x) \quad \text { provided } \alpha=\sim X \alpha \text { for some } \\
& \left(\sim b \alpha^{\prime}, a x\right) \vdash\left(a \sim b \alpha^{\prime}, x\right) \\
& (\varepsilon, a x) \vdash(a, x)
\end{aligned}
$$ $\left(X \alpha^{\prime}, a x\right)+\left(a x \alpha^{\prime}, x\right)$

(I) $(\sim Z, x) \vdash^{*}(\varepsilon, \varepsilon)$ implies $Z \Rightarrow_{G}^{*} \times$

$$
(\alpha, x) \vdash^{*}(\beta, y)
$$

(II) $(Y \sim X, X) \vdash^{+}(\varepsilon, \varepsilon)$ implies $X \Rightarrow_{G}^{+} Y_{X}$

$$
(\alpha \gamma, x z) \vdash^{*}(\beta \gamma, y z)
$$

(III) $(\sim X, x) \vdash^{*}(\sim Z, \varepsilon)$ implies $X \Rightarrow_{G}^{*} \times Z$
(I) $(\sim z, x) \vdash \mid \vdash(\varepsilon, \varepsilon)$
$Z=x=a \quad z \Rightarrow{ }_{G}^{*} x$
(IV) $\quad\left(Y_{p}^{\alpha} x\right) \vdash^{*}\left(X_{p, \varepsilon)}^{\alpha}\right)$ implies $X \rightarrow{ }^{*} Y x$

$$
\begin{aligned}
&(\sim Z, a x) \stackrel{l}{h} \text { heft }^{(a \sim Z, x)} \\
& \vdash^{*}(z, \varepsilon)
\end{aligned}
$$

(V) $\quad\left(\varepsilon,,^{\alpha}, x\right) \vdash^{*}\left(Y_{p, \varepsilon}^{\alpha}\right)$ implies $Y \Rightarrow^{*} x$

$$
Z \Rightarrow{ }_{G}^{+} a x(\text { by }(\text { II }))
$$

(II) $(Y \sim X, x) \stackrel{\text { red/pred }}{\left.\stackrel{\left(\sim Y_{2}\right.}{\ldots} \sim Y_{n} Z \sim X, x\right)}$

$$
\begin{gathered}
\left(\sim Y_{2}, y_{2}\right) L^{*}(\varepsilon, e) \quad \vdash^{*}\left(Y_{3} \quad z \rightarrow Y Y_{2}-Y_{n}\right. \\
Y_{2} \Rightarrow^{*} y_{2} \text { by (I) } \\
x=y_{2}-y_{n} z
\end{gathered}
$$

$$
\begin{aligned}
& \text { iNF } \quad A \rightarrow B C \quad X \rightarrow Y_{1} Y_{2} \\
& A \rightarrow a \quad \\
& (Y, \alpha, x)+\left(\sim Y_{2} X \alpha, x\right) \\
& \left(Y_{1} \sim X_{\alpha}, x\right)+\left(\sim Y_{2} \alpha, x\right) \\
& (\sim s, u w) \vdash^{*}\left(\sim v X_{n} \sim Z_{n} \ldots X_{1} \sim Z_{1}, w\right) \vdash^{*}(\varepsilon, \varepsilon) \\
& \left(\sim \stackrel{S}{v}_{1}, x_{1} y_{1} \ldots x_{n} y_{n} \vee z_{n} \cdots z_{1}\right) \vdash^{*}\left(\sim z_{1}, y_{1} x_{2} y_{2} \ldots x_{n} y_{n} \vee z_{n} \cdots z_{1}\right) \\
& \left(\sim v_{1}, x_{1}\right) \vdash^{*}\left(\sim z_{1}, z\right) \quad \vdash^{*}\left(y_{1} \sim z_{1}, x_{2} y_{2} \ldots x_{n} y_{n} v z_{n} \ldots z_{1}\right) \\
& v_{1} \Rightarrow r_{G}^{r} x_{1} z_{1} \quad x_{1} \rightarrow y_{1} v_{2} \quad \vdash\left(\sim v_{2} x_{1} \sim z_{1}, x_{2} y_{2} \ldots x_{n} y_{n} \vee z_{n} \ldots z_{1}\right) \\
& \left(\varepsilon, y_{1}\right) \vdash^{*}\left(Y_{1}, \varepsilon\right) \\
& r^{*}\left(\sim z_{2} x_{1} \sim z_{1}, y_{2} x_{3} y_{3} \cdots x_{n} y_{n} v z_{n} \ldots z_{1}\right) \\
& Y_{1} \Rightarrow_{G}^{*} y_{1} \quad\left(y_{1} \neq \varepsilon\right) \\
& v_{2} \Rightarrow x_{2}^{*} z_{2} \quad \vdash^{*}\left(\sim z_{n} x_{n-1} \sim z_{n-1} \ldots x_{1} \sim z_{1}, y_{n} v z_{n} \ldots z_{1}\right) \\
& X_{1} \rightarrow Y_{n} V_{n+1}\left(r^{*}\left(Y_{n} \sim Z_{n} X_{n-1} \sim Z_{n-1} \ldots X_{1} \sim Z_{1}, v Z_{n} \ldots Z_{1}\right)\right. \\
& \left.V_{n+1} \sim_{c}^{+} \sim V_{n+1}, v\right){ }^{*}(z, \varepsilon){ }^{+}+\left(\sim V_{n+1} x_{n} \sim Z_{n} \ldots x_{1} \sim Z_{1}, v z_{n} \ldots z_{1}\right) \\
& \vdash^{*}\left(x_{n} \sim z_{n} \quad x_{1} \sim z_{1}, z_{n} \ldots z_{1}\right) \\
& r^{*}\left(x_{n-1} \sim z_{n-1} \ldots x_{1} \sim z_{1}, z_{n-1} \ldots z_{1}\right) \\
& r^{*}(\varepsilon, \varepsilon)
\end{aligned}
$$

Exercise 2.6.
(2.1)

(2.7)

