
First-Order Logic

1. Language of first-order logic

• individual symbols

– individual variables: x1, x2, x3, . . . , x, y, z, . . .
– individual parameters: a1, a2, a3, . . . , a, b, c, . . .

• n-ary predicates (n ≥ 1)

• inductive definition of formulas:

(a) If P is an n-ary predicate and c1, . . . , cn are individual symbols, then

Pc1 . . . cn

is a formula.
(b) If A is a formula, then ¬A is a formula.
(c) If A and B are formulas, then

(A ∧B) (A ∨B) (A→ B) (A↔ B)

are formulas.
(d) If A is a formula and x is an individual variable, then

∀xA ∃xA

are formulas.

A formula is pure if it contains no parameters.

2. Examples. Suppose P and R are unary (i.e., 1-ary) predicates, and Q is a binary (i.e.,
2-ary) predicate. The following are pure formulas:

∀xPx ∨ ¬∃y Qxy
∀xPx→ (∀xQxy ∨Rx)

∀x(Px→ (Qxy ∨Rx))

∀x(Px→ ∀x(Qxy ∧Rx))

3. Free variables:

FV(Pc1 . . . cn) = { ci | 1 ≤ i ≤ n, ci is a variable }
FV(¬A) = FV(A),

FV(A b B) = FV(A) ∪ FV(B) (b ∈ {∧,∨,→,↔})
FV(qxA) = FV(A)− {x} (q ∈ {∀,∃})

A formula A is closed if FV(A) = ∅. A closed formula is also called a sentence. The
set of all closed pure formulas is written F.

4. Substitution of a parameter a for a variable x:

x[a/x] = a,

c[a/x] = c if c is not x,

(Pc1 . . . cn)[a/x] = Pc1[a/x] . . . cn[a/x],

(¬A)[a/x] = ¬A[a/x],

(A b B)[a/x] = A[a/x] b B[a/x],

(qxA)[a/x] = qxA,

(qy A)[a/x] = qy A[a/x] if y is not x.

Example:
(∀xPx ∨ ¬∃y Qxy)[a/x] = ∀xPx ∨ ¬∃y Qay.
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5. Formulas with constants in U . Let U be a non-empty set (universe or domain). A
U -formula is like a formula except that instead of parameters, elements of U (called
individual constants) are allowed as individual symbols. A U -formula may not contain
any parameters. A closed U -formula is called a U -sentence. Let FU be the set of all
U -sentences.

6. Substitution of an individual constant k for a variable x: A[k/x].

7. An interpretation of F in a universe U is a functionM which assigns each n-ary predicate
P an n-ary relation PM on U .

8. For each U -sentence A, we define what it means for A to be true under an interpretation
M in U . We write M |= A for “A is true under M”.

• M |= Pe1 . . . en iff (e1, . . . , en) stands in the relation PM .

• M |= ¬A iff M 6|= A.

• M |= A ∧B iff M |= A and M |= B.

• M |= A ∨B iff at least one of M |= A and M |= B holds.

• M |= A→ B iff at least one of M¬ |= A and M |= B holds.

• M |= A↔ B iff either M |= A and M |= B or M 6|= A and M 6|= B.

• M |= ∀xA iff for all d ∈ U , M |= A[d/x].

• M |= ∃xA iff for at least one d ∈ U , M |= A[d/x].

9. Let M be an interpretation, A a (signed) pure sentence, and S be a set of (signed) pure
sentences.

• M satisfies A iff A is true under M .

• A is satisfiable in U iff at least one interpretation in U satisfies A.

• A is satisfiable iff A is satisfiable in some universe.

• M satisfies S iff M satisfies all A in S.

• M is a model of S iff M satisfies S.

• S is satisfiable in U iff some interpretation in U satisfies S.

• S is satisfiable iff S is satisfiable in some universe.

• A is valid in U iff A is true under every interpretation in U .

• A is valid iff A is valid in every universe.

• A is a logical consequence of S iff every interpretation (in any universe) that
satisfies S satisfies A.

• A is logically equivalent to B iff A and B are true under the same interpretations
(in any universe).

10. Sentences with parameters. Let A(a1, . . . , an) be a (signed) sentence containing exactly
a1, . . . , an as parameters. Let M be an interpretation in U .

• A(a1, . . . , an) is satisfiable under M iff there is an n-tuple (k1, . . . , kn) of elements
of U such that A(k1, . . . , kn) is true under M .

• A(a1, . . . , an) is valid under M iff for every n-tuple (k1, . . . , kn) of elements of U ,
A(k1, . . . , kn) is true under M .

• A(a1, . . . , an) is satisfiable in U iff it is satisfiable under at least one interpretation
in U .

• A(a1, . . . , an) is valid in U iff it is valid under every interpretation in U .

• A(a1, . . . , an) is satisfiable iff it is satisfiable in at least one universe.

• A(a1, . . . , an) is valid iff it is valid in every universe.

(Here, A(k1, . . . , kn) is just like A(a1, . . . , an) except that ki occurs in place of ai for
i = 1, . . . , n.)

11. Let S be a set of (signed) sentences with parameters. If σ is a function from the set
of parameters of S (i.e., parameters that occur in S) to U , then Aσ is the result of
replacing each parameter a by σ(a) in A.
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• S is (simultaneously) satisfiable in U if there exists an interpretation M in U and
a function σ from the set of parameters of S to U such that for every A ∈ S, Aσ
is true under M .

• S is (simultaneously) satisfiable if S is (simultaneously) satisfiable in some uni-
verse.

Tableaux for First-Order Logic

1. Tableau expansion rules:

T ∀xA
T A[a/x]

F ∀xA
F A[b/x]

T ∃xA
T A[b/x]

F ∃xA
F A[a/x]

Proviso: b is a new parameter.

2. Example: ∀x(Px→ Qx)→ (∀xPx→ ∀xQx).

3. Example: ∃y(∃xPx→ Py).

4. Exercise. Find tableau proofs of the following formulas:

∀y(∀xPx→ Py)

∀xPx→ ∃xPx
∃y(Py → ∀xPx)

¬∃y Py → (∀y(∃xPx→ Py))

∃xPx→ ∃xPy
∀x(Px ∧Qx)↔ ∀xPx ∧ ∀xQx
(∀xPx ∨ ∀xQx)→ ∀x(Px ∨Qx)

∃(Px ∨Qx)↔ (∃xPx ∨ ∃xQx)

∃x(Px ∧Qx)→ (∃xPx ∧ ∃xQx)

∃x(Px→ Qx)↔ (∀xPx→ ∃xQx)

5. Exercise. Let C be a closed formula. Find tableau proofs of the following formulas:

∀x(Px ∨ C)↔ (∀xPx ∨ C)

∃x(Px ∧ C)↔ (∃xPx ∧ C)

6. Exercise. Find a tableau proof of (H ∧K)→ L, where

H = ∀x∀y(Rxy → Ryx)

K = ∀x∀y∀z((Rxy ∧Ryz)→ Rxz)

L = ∀x∀y(Rxy → Rxx)

7. Exercise. Find a tableau proof of (A ∧B)→ C, where

A = ∀x((Fx ∧Gx)→ Hx)→ ∃x(Fx ∧ ¬Gx)

B = ∀x(Fx→ Gx) ∨ ∀x(Fx→ Hx)

C = ∀x((Fx ∧Hx)→ Gx)→ ∃x(Fx ∧Gx ∧ ¬Hx)

8. Lemma. Let S be a set of signed sentences with parameters.

(a) If S is satisfiable and T ∀xA ∈ S, then for every parameter a, S ∪ {T A[a/x]} is
satisfiable.

(b) If S is satisfiable and F ∃xA ∈ S, then for every parameter a, S ∪ {F A[a/x]} is
satisfiable.

(c) If S is satisfiable, F ∀xA ∈ S, and b is a parameter that does not occur in any
element of S, then S ∪ {F A[b/x]} is satisfiable.

(d) If S is satisfiable, T ∃xA ∈ S, and b is a parameter that does not occur in any
element of S, then S ∪ {T A[b/x]} is satisfiable.

3



9. Soundness Theorem. Every satisfiable set of signed formulas is consistent (i.e., has no
finite closed tableau).

10. A set S of signed U -sentences is said to obey

• T ∀xA
T A[a/x]

relative to U if whenever T ∀xA ∈ S, then T A[k/x] ∈ S for all k ∈ U .

• F ∀xA
F A[b/x]

relative to U if whenever F ∀xA ∈ S, then F A[k/x] ∈ S for at least

one element k of U .

• T ∃xA
T A[b/x]

relative to U if whenever T ∃xA ∈ S, then T A[k/x] ∈ S for at least

one element k of U .

• F ∃xA
F A[a/x]

relative to U if whenever F ∃xA ∈ S, then F A[k/x] ∈ S for all k ∈ U .

11. A set S of signed U -sentences is a Hintikka set for a universe U iff

• There are no n-ary predicate and elements k1, . . . , kn of U such that both T Pk1 . . . kn
and F Pk1 . . . kn are in S, and

• S obeys all tableau expansion rules (relative to U).

12. Lemma. Every Hintikka set for a universe U is satisfiable in U .

Proof. Define an interpretation M in U by

PM holds of (k1, . . . , kn) iff T Pk1 . . . kn ∈ S.

We show by induction that for all U -sentences A, T A ∈ S implies M |= A and F A ∈ S
implies M 6|= A.

Induction Basis. A is Pk1 . . . kn for some n-ary predicate P and k1, . . . , kn ∈ U . If
T Pk1 . . . kn ∈ S, then M |= Pk1 . . . kn by the definition of M . If F Pk1 . . . kn ∈ S,
then T Pk1 . . . kn 6∈ S, since S is a Hintikka set. So M 6|= Pk1 . . . kn by the definition
of M .

Induction Step. Case 6. A is ∀xB. If T ∀xB ∈ S, then for all k ∈ U , T B[k/x] ∈ S
since S is a Hintikka set. By induction hypothesis, M |= B[k/x]. Since this holds of all
k, M |= ∀xB. If F ∀xB ∈ S, then there exists a k ∈ U such that F B[k/x] ∈ S, since
S is a Hintikka set. By induction hypothesis, M 6|= B[k/x]. Therefore, M 6|= ∀xB.

Case 7. Similar.

13. Let a1, a2, a3, . . . list the parameters. We say that a node labeled X in a tableau is
fulfilled for n iff for every open path ρ that goes through the node, the following hold:

• if
X
Y

is an instance of a tableau expansion rule in propositional logic, Y is on ρ,

• if
X
Y1
Y2

is an instance of a tableau expansion rule, both Y1 and Y2 are on ρ,

• if
X

Y Z
is an instance of a tableau expansion rule, either Y or Z is on ρ,

• if
X

Y1 Z1

Y2 Z2

is an instance of a tableau expansion rule, either both Y1 and Y2 are

on ρ, or else both Z1 and Z2 are on ρ,

• if X = T ∀xA, then T A[ai/x] is on ρ for all i ≤ n,

• if X = F ∃xA, then F A[ai/x] is on ρ for all i ≤ n,

• if X = F ∀xA, then F A[b/x] is on ρ for some b, and

• if X = T ∃xA, then T A[b/x] is on ρ for some b.

14. Lemma. Any finite tableau T for S can be extended to a finite tableau T ′ for S in
which every node of T is fulfilled for n.
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15. A tableau is finished if every open path obeys all tableau expansion rules relative to
the set of parameters.

16. Lemma. For every set S of signed sentences, there is a finished tableau for S.

Proof. Let X0, X1, X2, . . . be an enumeration of the elements of S. We recursively
define finite tableaux Tn for S, for all natural numbers n. Let T0 be a tableau with just
one node, labeled by X0. Now assume that Tn has been defined. We take all the nodes
of Tn that are not yet fulfilled for n, and extend Tn to T ′n by fulfilling those nodes for n.
Then we adjoin a new node labeled by Xn+1 at the end of every open path in T ′n. The
result is Tn+1. Having defined an infinite sequence T0, T1, T2, . . . of finite tableaux for
S, we let T =

⋃
n Tn. It is easy to see that T is a tableau, every node of T is fulfilled

for all n, and Xn is on every open path of T for all n. Therefore, T is a finished tableau
for S.

17. Completeness Theorem. Every consistent set of signed sentences in first-order logic is
satisfiable.

18. Compactness Theorem. Let S be a set of signed sentences. If every finite subset of S
is satisfiable, then S is satisfiable.

19. Example of an application of the Compactness Theorem. Let R be a binary predicate.
Every (finite or infinite) graph G = (V,E) determines an interpretation MG in universe
V such that RMG holds of (v1, v2) iff {v1, v2} ∈ E. Show that there is no sentence A of
first-order logic such that MG |= A iff G is connected.

Consider S′ = {A,∃x((Rax ∧ ¬Rbx) ∨ (Rxa ∧ ¬Rxb))} ∪ S, where

S = {Dn | n ≥ 0 },
D0 = ¬Rab,
Dn = ¬∃x1 . . . ∃xn(Rax1 ∧Rx1x2 ∧ . . . Rxn−1xn ∧Rxnb) for n ≥ 1.
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