First-Order Logic

1. Language of first-order logic

- individual symbols
- individual variables: $x_{1}, x_{2}, x_{3}, \ldots, x, y, z, \ldots$
- individual parameters: $a_{1}, a_{2}, a_{3}, \ldots, a, b, c, \ldots$
- n-ary predicates $(n \geq 1)$
- inductive definition of formulas:
(a) If P is an n-ary predicate and c_{1}, \ldots, c_{n} are individual symbols, then

$$
P c_{1} \ldots c_{n}
$$

is a formula.
(b) If A is a formula, then $\neg A$ is a formula.
(c) If A and B are formulas, then

$$
(A \wedge B) \quad(A \vee B) \quad(A \rightarrow B) \quad(A \leftrightarrow B)
$$

are formulas.
(d) If A is a formula and x is an individual variable, then

$$
\forall x A \quad \exists x A
$$

are formulas.
A formula is pure if it contains no parameters.
2. Examples. Suppose P and R are unary (i.e., 1 -ary) predicates, and Q is a binary (i.e., 2 -ary) predicate. The following are pure formulas:

$$
\begin{gathered}
\forall x P x \vee \neg \exists y Q x y \\
\forall x P x \rightarrow(\forall x Q x y \vee R x) \\
\forall x(P x \rightarrow(Q x y \vee R x)) \\
\forall x(P x \rightarrow \forall x(Q x y \wedge R x))
\end{gathered}
$$

3. Free variables:

$$
\begin{aligned}
\mathrm{FV}\left(P c_{1} \ldots c_{n}\right) & =\left\{c_{i} \mid 1 \leq i \leq n, c_{i} \text { is a variable }\right\} \\
\mathrm{FV}(\neg A) & =\mathrm{FV}(A), \\
\mathrm{FV}(A b B) & =\mathrm{FV}(A) \cup \mathrm{FV}(B) \quad(b \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}) \\
\mathrm{FV}(q x A) & =\mathrm{FV}(A)-\{x\} \quad(q \in\{\forall, \exists\})
\end{aligned}
$$

A formula A is closed if $\mathrm{FV}(A)=\varnothing$. A closed formula is also called a sentence. The set of all closed pure formulas is written \mathbb{F}.
4. Substitution of a parameter a for a variable x :

$$
\begin{aligned}
x[a / x] & =a, \\
c[a / x] & =c \quad \text { if } c \text { is not } x, \\
\left(P c_{1} \ldots c_{n}\right)[a / x] & =P c_{1}[a / x] \ldots c_{n}[a / x], \\
(\neg A)[a / x] & =\neg A[a / x], \\
(A b B)[a / x] & =A[a / x] b B[a / x], \\
(q x A)[a / x] & =q x A, \\
(q y A)[a / x] & =q y A[a / x] \quad \text { if } y \text { is not } x .
\end{aligned}
$$

Example:

$$
(\forall x P x \vee \neg \exists y Q x y)[a / x]=\forall x P x \vee \neg \exists y Q a y .
$$

5. Formulas with constants in U. Let U be a non-empty set (universe or domain). A U-formula is like a formula except that instead of parameters, elements of U (called individual constants) are allowed as individual symbols. A U-formula may not contain any parameters. A closed U-formula is called a U-sentence. Let \mathbb{F}^{U} be the set of all U-sentences.
6. Substitution of an individual constant k for a variable $x: A[k / x]$.
7. An interpretation of \mathbb{F} in a universe U is a function M which assigns each n-ary predicate P an n-ary relation P^{M} on U.
8. For each U-sentence A, we define what it means for A to be true under an interpretation M in U. We write $M \models A$ for " A is true under M ".

- $M \models P e_{1} \ldots e_{n}$ iff $\left(e_{1}, \ldots, e_{n}\right)$ stands in the relation P^{M}.
- $M \models \neg A$ iff $M \not \vDash A$.
- $M \models A \wedge B$ iff $M \models A$ and $M \models B$.
- $M \models A \vee B$ iff at least one of $M \models A$ and $M \models B$ holds.
- $M \models A \rightarrow B$ iff at least one of $M \neg \models A$ and $M \models B$ holds.
- $M \models A \leftrightarrow B$ iff either $M \models A$ and $M \models B$ or $M \not \vDash A$ and $M \not \vDash B$.
- $M \models \forall x A$ iff for all $d \in U, M \models A[d / x]$.
- $M \models \exists x A$ iff for at least one $d \in U, M \models A[d / x]$.

9. Let M be an interpretation, A a (signed) pure sentence, and S be a set of (signed) pure sentences.

- M satisfies A iff A is true under M.
- A is satisfiable in U iff at least one interpretation in U satisfies A.
- A is satisfiable iff A is satisfiable in some universe.
- M satisfies S iff M satisfies all A in S.
- M is a model of S iff M satisfies S.
- S is satisfiable in U iff some interpretation in U satisfies S.
- S is satisfiable iff S is satisfiable in some universe.
- A is valid in U iff A is true under every interpretation in U.
- A is valid iff A is valid in every universe.
- A is a logical consequence of S iff every interpretation (in any universe) that satisfies S satisfies A.
- A is logically equivalent to B iff A and B are true under the same interpretations (in any universe).

10. Sentences with parameters. Let $A\left(a_{1}, \ldots, a_{n}\right)$ be a (signed) sentence containing exactly a_{1}, \ldots, a_{n} as parameters. Let M be an interpretation in U.

- $A\left(a_{1}, \ldots, a_{n}\right)$ is satisfiable under M iff there is an n-tuple $\left(k_{1}, \ldots, k_{n}\right)$ of elements of U such that $A\left(k_{1}, \ldots, k_{n}\right)$ is true under M.
- $A\left(a_{1}, \ldots, a_{n}\right)$ is valid under M iff for every n-tuple $\left(k_{1}, \ldots, k_{n}\right)$ of elements of U, $A\left(k_{1}, \ldots, k_{n}\right)$ is true under M.
- $A\left(a_{1}, \ldots, a_{n}\right)$ is satisfiable in U iff it is satisfiable under at least one interpretation in U.
- $A\left(a_{1}, \ldots, a_{n}\right)$ is valid in U iff it is valid under every interpretation in U.
- $A\left(a_{1}, \ldots, a_{n}\right)$ is satisfiable iff it is satisfiable in at least one universe.
- $A\left(a_{1}, \ldots, a_{n}\right)$ is valid iff it is valid in every universe.
(Here, $A\left(k_{1}, \ldots, k_{n}\right)$ is just like $A\left(a_{1}, \ldots, a_{n}\right)$ except that k_{i} occurs in place of a_{i} for $i=1, \ldots, n$.)

11. Let S be a set of (signed) sentences with parameters. If σ is a function from the set of parameters of S (i.e., parameters that occur in S) to U, then $A \sigma$ is the result of replacing each parameter a by $\sigma(a)$ in A.

- S is (simultaneously) satisfiable in U if there exists an interpretation M in U and a function σ from the set of parameters of S to U such that for every $A \in S, A \sigma$ is true under M.
- S is (simultaneously) satisfiable if S is (simultaneously) satisfiable in some universe.

Tableaux for First-Order Logic

1. Tableau expansion rules:

$$
\frac{T \forall x A}{T A[a / x]} \quad \frac{F \forall x A}{F A[b / x]} \quad \frac{T \exists x A}{T A[b / x]} \quad \frac{F \exists x A}{F A[a / x]}
$$

Proviso: b is a new parameter.
2. Example: $\forall x(P x \rightarrow Q x) \rightarrow(\forall x P x \rightarrow \forall x Q x)$.
3. Example: $\exists y(\exists x P x \rightarrow P y)$.
4. Exercise. Find tableau proofs of the following formulas:

$$
\begin{aligned}
& \forall y(\forall x P x \rightarrow P y) \\
& \forall x P x \rightarrow \exists x P x \\
& \exists y(P y \rightarrow \forall x P x) \\
& \neg \exists y P y \rightarrow(\forall y(\exists x P x \rightarrow P y)) \\
& \exists x P x \rightarrow \exists x P y \\
& \forall x(P x \wedge Q x) \leftrightarrow \forall x P x \wedge \forall x Q x \\
& (\forall x P x \vee \forall x Q x) \rightarrow \forall x(P x \vee Q x) \\
& \exists(P x \vee Q x) \leftrightarrow(\exists x P x \vee \exists x Q x) \\
& \exists x(P x \wedge Q x) \rightarrow(\exists x P x \wedge \exists x Q x) \\
& \exists x(P x \rightarrow Q x) \leftrightarrow(\forall x P x \rightarrow \exists x Q x)
\end{aligned}
$$

5. Exercise. Let C be a closed formula. Find tableau proofs of the following formulas:

$$
\begin{aligned}
& \forall x(P x \vee C) \leftrightarrow(\forall x P x \vee C) \\
& \exists x(P x \wedge C) \leftrightarrow(\exists x P x \wedge C)
\end{aligned}
$$

6. Exercise. Find a tableau proof of $(H \wedge K) \rightarrow L$, where

$$
\begin{aligned}
H & =\forall x \forall y(R x y \rightarrow R y x) \\
K & =\forall x \forall y \forall z((R x y \wedge R y z) \rightarrow R x z) \\
L & =\forall x \forall y(R x y \rightarrow R x x)
\end{aligned}
$$

7. Exercise. Find a tableau proof of $(A \wedge B) \rightarrow C$, where

$$
\begin{aligned}
& A=\forall x((F x \wedge G x) \rightarrow H x) \rightarrow \exists x(F x \wedge \neg G x) \\
& B=\forall x(F x \rightarrow G x) \vee \forall x(F x \rightarrow H x) \\
& C=\forall x((F x \wedge H x) \rightarrow G x) \rightarrow \exists x(F x \wedge G x \wedge \neg H x)
\end{aligned}
$$

8. Lemma. Let S be a set of signed sentences with parameters.
(a) If S is satisfiable and $T \forall x A \in S$, then for every parameter $a, S \cup\{T A[a / x]\}$ is satisfiable.
(b) If S is satisfiable and $F \exists x A \in S$, then for every parameter $a, S \cup\{F A[a / x]\}$ is satisfiable.
(c) If S is satisfiable, $F \forall x A \in S$, and b is a parameter that does not occur in any element of S, then $S \cup\{F A[b / x]\}$ is satisfiable.
(d) If S is satisfiable, $T \exists x A \in S$, and b is a parameter that does not occur in any element of S, then $S \cup\{T A[b / x]\}$ is satisfiable.
9. Soundness Theorem. Every satisfiable set of signed formulas is consistent (i.e., has no finite closed tableau).
10. A set S of signed U-sentences is said to obey

- $\frac{T \forall x A}{T A[a / x]}$ relative to U if whenever $T \forall x A \in S$, then $T A[k / x] \in S$ for all $k \in U$.
- $\frac{F \forall x A}{F A[b / x]}$ relative to U if whenever $F \forall x A \in S$, then $F A[k / x] \in S$ for at least one element k of U.
- $\frac{T \exists x A}{T A[b / x]}$ relative to U if whenever $T \exists x A \in S$, then $T A[k / x] \in S$ for at least one element k of U.
- $\frac{F \exists x A}{F A[a / x]}$ relative to U if whenever $F \exists x A \in S$, then $F A[k / x] \in S$ for all $k \in U$.

11. A set S of signed U-sentences is a Hintikka set for a universe U iff

- There are no n-ary predicate and elements k_{1}, \ldots, k_{n} of U such that both $T P k_{1} \ldots k_{n}$ and $F P k_{1} \ldots k_{n}$ are in S, and
- S obeys all tableau expansion rules (relative to U).

12. Lemma. Every Hintikka set for a universe U is satisfiable in U.

Proof. Define an interpretation M in U by

$$
P^{M} \text { holds of }\left(k_{1}, \ldots, k_{n}\right) \text { iff } T P k_{1} \ldots k_{n} \in S
$$

We show by induction that for all U-sentences $A, T A \in S$ implies $M \models A$ and $F A \in S$ implies $M \not \vDash A$.
Induction Basis. A is $P k_{1} \ldots k_{n}$ for some n-ary predicate P and $k_{1}, \ldots, k_{n} \in U$. If $T P k_{1} \ldots k_{n} \in S$, then $M \models P k_{1} \ldots k_{n}$ by the definition of M. If $F P k_{1} \ldots k_{n} \in S$, then $T P k_{1} \ldots k_{n} \notin S$, since S is a Hintikka set. So $M \not \vDash P k_{1} \ldots k_{n}$ by the definition of M.
Induction Step. Case 6. A is $\forall x B$. If $T \forall x B \in S$, then for all $k \in U, T B[k / x] \in S$ since S is a Hintikka set. By induction hypothesis, $M \models B[k / x]$. Since this holds of all $k, M \models \forall x B$. If $F \forall x B \in S$, then there exists a $k \in U$ such that $F B[k / x] \in S$, since S is a Hintikka set. By induction hypothesis, $M \not \vDash B[k / x]$. Therefore, $M \not \vDash \forall x B$.
Case 7. Similar.
13. Let $a_{1}, a_{2}, a_{3}, \ldots$ list the parameters. We say that a node labeled X in a tableau is fulfilled for n iff for every open path ρ that goes through the node, the following hold:

- if $\frac{X}{Y}$ is an instance of a tableau expansion rule in propositional logic, Y is on ρ,
- if $\frac{X}{Y_{1}}$ is an instance of a tableau expansion rule, both Y_{1} and Y_{2} are on ρ, Y_{2}
- if $\frac{X}{Y \mid Z}$ is an instance of a tableau expansion rule, either Y or Z is on ρ,
- if | X | |
| :---: | :--- |
| Y_{1} | Z_{1} |
| | Y_{2} |
| Z_{2} | | is an instance of a tableau expansion rule, either both Y_{1} and Y_{2} are on ρ, or else both Z_{1} and Z_{2} are on ρ,
- if $X=T \forall x A$, then $T A\left[a_{i} / x\right]$ is on ρ for all $i \leq n$,
- if $X=F \exists x A$, then $F A\left[a_{i} / x\right]$ is on ρ for all $i \leq n$,
- if $X=F \forall x A$, then $F A[b / x]$ is on ρ for some b, and
- if $X=T \exists x A$, then $T A[b / x]$ is on ρ for some b.

14. Lemma. Any finite tableau \mathcal{T} for S can be extended to a finite tableau \mathcal{T}^{\prime} for S in which every node of \mathcal{T} is fulfilled for n.
15. A tableau is finished if every open path obeys all tableau expansion rules relative to the set of parameters.
16. Lemma. For every set S of signed sentences, there is a finished tableau for S.

Proof. Let $X_{0}, X_{1}, X_{2}, \ldots$ be an enumeration of the elements of S. We recursively define finite tableaux \mathcal{T}_{n} for S, for all natural numbers n. Let \mathcal{T}_{0} be a tableau with just one node, labeled by X_{0}. Now assume that \mathcal{T}_{n} has been defined. We take all the nodes of \mathcal{T}_{n} that are not yet fulfilled for n, and extend \mathcal{T}_{n} to \mathcal{T}_{n}^{\prime} by fulfilling those nodes for n. Then we adjoin a new node labeled by X_{n+1} at the end of every open path in \mathcal{T}_{n}^{\prime}. The result is \mathcal{T}_{n+1}. Having defined an infinite sequence $\mathcal{T}_{0}, \mathcal{T}_{1}, \mathcal{T}_{2}, \ldots$ of finite tableaux for S, we let $\mathcal{T}=\bigcup_{n} \mathcal{T}_{n}$. It is easy to see that \mathcal{T} is a tableau, every node of \mathcal{T} is fulfilled for all n, and X_{n} is on every open path of \mathcal{T} for all n. Therefore, \mathcal{T} is a finished tableau for S.
17. Completeness Theorem. Every consistent set of signed sentences in first-order logic is satisfiable.
18. Compactness Theorem. Let S be a set of signed sentences. If every finite subset of S is satisfiable, then S is satisfiable.
19. Example of an application of the Compactness Theorem. Let R be a binary predicate. Every (finite or infinite) graph $G=(V, E)$ determines an interpretation M_{G} in universe V such that $R^{M_{G}}$ holds of $\left(v_{1}, v_{2}\right)$ iff $\left\{v_{1}, v_{2}\right\} \in E$. Show that there is no sentence A of first-order logic such that $M_{G} \models A$ iff G is connected.
Consider $S^{\prime}=\{A, \exists x((R a x \wedge \neg R b x) \vee(R x a \wedge \neg R x b))\} \cup S$, where

$$
\begin{array}{rlr}
S & =\left\{D_{n} \mid n \geq 0\right\} \\
D_{0} & =\neg R a b, & \\
D_{n} & =\neg \exists x_{1} \ldots \exists x_{n}\left(\operatorname{Rax}_{1} \wedge R x_{1} x_{2} \wedge \ldots R x_{n-1} x_{n} \wedge R x_{n} b\right) \quad \text { for } n \geq 1 .
\end{array}
$$

