First-Order Logic

- 1. Language of first-order logic
 - individual symbols
 - individual variables: $x_1, x_2, x_3, \ldots, x, y, z, \ldots$
 - individual parameters: $a_1, a_2, a_3, \ldots, a, b, c, \ldots$
 - *n*-ary predicates $(n \ge 1)$
 - inductive definition of *formulas*:
 - (a) If P is an n-ary predicate and c_1, \ldots, c_n are individual symbols, then

$$Pc_1 \ldots c_n$$

is a formula.

- (b) If A is a formula, then $\neg A$ is a formula.
- (c) If A and B are formulas, then

$$(A \land B) \quad (A \lor B) \quad (A \to B) \quad (A \leftrightarrow B)$$

are formulas.

(d) If A is a formula and x is an individual variable, then

$$\forall x A \quad \exists x A$$

are formulas.

A formula is *pure* if it contains no parameters.

2. Examples. Suppose P and R are unary (i.e., 1-ary) predicates, and Q is a binary (i.e., 2-ary) predicate. The following are pure formulas:

$$\forall x Px \lor \neg \exists y Qxy \forall x Px \rightarrow (\forall x Qxy \lor Rx) \forall x (Px \rightarrow (Qxy \lor Rx)) \forall x (Px \rightarrow \forall x (Qxy \land Rx))$$

3. Free variables:

$$\begin{aligned} \operatorname{FV}(Pc_1 \dots c_n) &= \{ c_i \mid 1 \leq i \leq n, c_i \text{ is a variable} \} \\ \operatorname{FV}(\neg A) &= \operatorname{FV}(A), \\ \operatorname{FV}(A \ b \ B) &= \operatorname{FV}(A) \cup \operatorname{FV}(B) \quad (b \in \{\land, \lor, \rightarrow, \leftrightarrow\}) \\ \operatorname{FV}(qx \ A) &= \operatorname{FV}(A) - \{x\} \quad (q \in \{\forall, \exists\}) \end{aligned}$$

A formula A is closed if $FV(A) = \emptyset$. A closed formula is also called a *sentence*. The set of all closed pure formulas is written \mathbb{F} .

4. Substitution of a parameter a for a variable x:

$$\begin{aligned} x[a/x] &= a, \\ c[a/x] &= c \quad \text{if } c \text{ is not } x, \\ (Pc_1 \dots c_n)[a/x] &= Pc_1[a/x] \dots c_n[a/x], \\ (\neg A)[a/x] &= \neg A[a/x], \\ (A \ b \ B)[a/x] &= A[a/x] \ b \ B[a/x], \\ (qx \ A)[a/x] &= qx \ A, \\ (qy \ A)[a/x] &= qy \ A[a/x] \quad \text{if } y \text{ is not } x. \end{aligned}$$

Example:

$$(\forall x \, Px \lor \neg \exists y \, Qxy)[a/x] = \forall x \, Px \lor \neg \exists y \, Qay.$$

- 5. Formulas with constants in U. Let U be a non-empty set (*universe* or *domain*). A U-formula is like a formula except that instead of parameters, elements of U (called *individual constants*) are allowed as individual symbols. A U-formula may not contain any parameters. A closed U-formula is called a U-sentence. Let \mathbb{F}^U be the set of all U-sentences.
- 6. Substitution of an individual constant k for a variable x: A[k/x].
- 7. An *interpretation* of \mathbb{F} in a universe U is a function M which assigns each n-ary predicate P an n-ary relation P^M on U.
- 8. For each U-sentence A, we define what it means for A to be *true* under an interpretation M in U. We write $M \models A$ for "A is true under M".
 - $M \models Pe_1 \dots e_n$ iff (e_1, \dots, e_n) stands in the relation P^M .
 - $M \models \neg A$ iff $M \not\models A$.
 - $M \models A \land B$ iff $M \models A$ and $M \models B$.
 - $M \models A \lor B$ iff at least one of $M \models A$ and $M \models B$ holds.
 - $M \models A \rightarrow B$ iff at least one of $M \neg \models A$ and $M \models B$ holds.
 - $M \models A \leftrightarrow B$ iff either $M \models A$ and $M \models B$ or $M \not\models A$ and $M \not\models B$.
 - $M \models \forall x A$ iff for all $d \in U$, $M \models A[d/x]$.
 - $M \models \exists x A$ iff for at least one $d \in U$, $M \models A[d/x]$.
- 9. Let M be an interpretation, A a (signed) pure sentence, and S be a set of (signed) pure sentences.
 - M satisfies A iff A is true under M.
 - A is satisfiable in U iff at least one interpretation in U satisfies A.
 - A is *satisfiable* iff A is satisfiable in some universe.
 - M satisfies S iff M satisfies all A in S.
 - M is a model of S iff M satisfies S.
 - S is satisfiable in U iff some interpretation in U satisfies S.
 - S is satisfiable iff S is satisfiable in some universe.
 - A is valid in U iff A is true under every interpretation in U.
 - A is valid iff A is valid in every universe.
 - A is a logical consequence of S iff every interpretation (in any universe) that satisfies S satisfies A.
 - A is *logically equivalent to B* iff A and B are true under the same interpretations (in any universe).
- 10. Sentences with parameters. Let $A(a_1, \ldots, a_n)$ be a (signed) sentence containing exactly a_1, \ldots, a_n as parameters. Let M be an interpretation in U.
 - $A(a_1, \ldots, a_n)$ is satisfiable under M iff there is an n-tuple (k_1, \ldots, k_n) of elements of U such that $A(k_1, \ldots, k_n)$ is true under M.
 - $A(a_1, \ldots, a_n)$ is valid under M iff for every n-tuple (k_1, \ldots, k_n) of elements of U, $A(k_1, \ldots, k_n)$ is true under M.
 - $A(a_1, \ldots, a_n)$ is satisfiable in U iff it is satisfiable under at least one interpretation in U.
 - $A(a_1, \ldots, a_n)$ is valid in U iff it is valid under every interpretation in U.
 - $A(a_1, \ldots, a_n)$ is *satisfiable* iff it is satisfiable in at least one universe.
 - $A(a_1, \ldots, a_n)$ is *valid* iff it is valid in every universe.

(Here, $A(k_1, \ldots, k_n)$ is just like $A(a_1, \ldots, a_n)$ except that k_i occurs in place of a_i for $i = 1, \ldots, n$.)

11. Let S be a set of (signed) sentences with parameters. If σ is a function from the set of parameters of S (i.e., parameters that occur in S) to U, then $A\sigma$ is the result of replacing each parameter a by $\sigma(a)$ in A.

- S is (simultaneously) satisfiable in U if there exists an interpretation M in U and a function σ from the set of parameters of S to U such that for every $A \in S$, $A\sigma$ is true under M.
- S is (simultaneously) satisfiable if S is (simultaneously) satisfiable in some universe.

Tableaux for First-Order Logic

1. Tableau expansion rules:

$$\frac{T \,\forall x \, A}{T \, A[a/x]} \quad \frac{F \,\forall x \, A}{F \, A[b/x]} \qquad \frac{T \,\exists x \, A}{T \, A[b/x]} \quad \frac{F \,\exists x \, A}{F \, A[a/x]}$$

Proviso: b is a new parameter.

- 2. Example: $\forall x(Px \to Qx) \to (\forall x Px \to \forall xQx).$
- 3. Example: $\exists y (\exists x Px \to Py)$.
- 4. Exercise. Find tableau proofs of the following formulas:

$$\begin{aligned} \forall y (\forall x \ Px \to Py) \\ \forall x \ Px \to \exists x \ Px \\ \exists y (Py \to \forall x \ Px) \\ \neg \exists y \ Py \to (\forall y (\exists x \ Px \to Py)) \\ \exists x \ Px \to \exists x \ Py \\ \forall x (Px \land Qx) \leftrightarrow \forall x \ Px \land \forall x \ Qx \\ (\forall x \ Px \lor \forall x \ Qx) \to \forall x (Px \lor Qx) \\ \exists (Px \lor Qx) \leftrightarrow (\exists x \ Px \lor \exists x \ Qx) \\ \exists x (Px \land Qx) \to (\exists x \ Px \land \exists x \ Qx) \\ \exists x (Px \to Qx) \leftrightarrow (\forall x \ Px \to \exists x \ Qx) \end{aligned}$$

5. Exercise. Let C be a closed formula. Find tableau proofs of the following formulas:

$$\forall x (Px \lor C) \leftrightarrow (\forall x Px \lor C) \\ \exists x (Px \land C) \leftrightarrow (\exists x Px \land C)$$

6. Exercise. Find a tableau proof of $(H \wedge K) \to L$, where

$$\begin{split} H &= \forall x \forall y (Rxy \to Ryx) \\ K &= \forall x \forall y \forall z ((Rxy \land Ryz) \to Rxz) \\ L &= \forall x \forall y (Rxy \to Rxx) \end{split}$$

7. Exercise. Find a tableau proof of $(A \land B) \to C$, where

$$A = \forall x ((Fx \land Gx) \to Hx) \to \exists x (Fx \land \neg Gx)$$
$$B = \forall x (Fx \to Gx) \lor \forall x (Fx \to Hx)$$
$$C = \forall x ((Fx \land Hx) \to Gx) \to \exists x (Fx \land Gx \land \neg Hx)$$

- 8. Lemma. Let S be a set of signed sentences with parameters.
 - (a) If S is satisfiable and $T \forall x A \in S$, then for every parameter $a, S \cup \{T A[a/x]\}$ is satisfiable.
 - (b) If S is satisfiable and $F \exists x A \in S$, then for every parameter $a, S \cup \{F A[a/x]\}$ is satisfiable.
 - (c) If S is satisfiable, $F \forall x A \in S$, and b is a parameter that does not occur in any element of S, then $S \cup \{F A[b/x]\}$ is satisfiable.
 - (d) If S is satisfiable, $T \exists x A \in S$, and b is a parameter that does not occur in any element of S, then $S \cup \{T A[b/x]\}$ is satisfiable.

- 9. Soundness Theorem. Every satisfiable set of signed formulas is consistent (i.e., has no finite closed tableau).
- 10. A set S of signed U-sentences is said to obey
 - $\frac{T \forall x A}{T A[a/x]}$ relative to U if whenever $T \forall x A \in S$, then $T A[k/x] \in S$ for all $k \in U$.
 - $\frac{F \forall x A}{F A[b/x]}$ relative to U if whenever $F \forall x A \in S$, then $F A[k/x] \in S$ for at least one element k of U.
 - $\frac{T \exists x A}{T A[b/x]}$ relative to U if whenever $T \exists x A \in S$, then $T A[k/x] \in S$ for at least one element k of U.
 - $\frac{F \exists x A}{F A[a/x]}$ relative to U if whenever $F \exists x A \in S$, then $F A[k/x] \in S$ for all $k \in U$.
- 11. A set S of signed $U\mbox{-sentences}$ is a $Hintikka\ set$ for a universe U iff
 - There are no *n*-ary predicate and elements k_1, \ldots, k_n of *U* such that both $T P k_1 \ldots k_n$ and $F P k_1 \ldots k_n$ are in *S*, and
 - S obeys all tableau expansion rules (relative to U).
- 12. Lemma. Every Hintikka set for a universe U is satisfiable in U.

Proof. Define an interpretation M in U by

$$P^M$$
 holds of (k_1, \ldots, k_n) iff $T P k_1 \ldots k_n \in S$.

We show by induction that for all U-sentences $A, TA \in S$ implies $M \models A$ and $FA \in S$ implies $M \not\models A$.

Induction Basis. A is $Pk_1 \ldots k_n$ for some *n*-ary predicate P and $k_1, \ldots, k_n \in U$. If $T Pk_1 \ldots k_n \in S$, then $M \models Pk_1 \ldots k_n$ by the definition of M. If $F Pk_1 \ldots k_n \in S$, then $T Pk_1 \ldots k_n \notin S$, since S is a Hintikka set. So $M \not\models Pk_1 \ldots k_n$ by the definition of M.

Induction Step. Case 6. A is $\forall x B$. If $T \forall x B \in S$, then for all $k \in U$, $T B[k/x] \in S$ since S is a Hintikka set. By induction hypothesis, $M \models B[k/x]$. Since this holds of all $k, M \models \forall x B$. If $F \forall x B \in S$, then there exists a $k \in U$ such that $F B[k/x] \in S$, since S is a Hintikka set. By induction hypothesis, $M \not\models B[k/x]$. Therefore, $M \not\models \forall x B$.

Case 7. Similar.

- 13. Let a_1, a_2, a_3, \ldots list the parameters. We say that a node labeled X in a tableau is *fulfilled* for n iff for every open path ρ that goes through the node, the following hold:
 - if $\frac{X}{Y}$ is an instance of a tableau expansion rule in propositional logic, Y is on ρ ,
 - if $\overline{Y_1}$ is an instance of a tableau expansion rule, both Y_1 and Y_2 are on ρ , Y_2
 - if $\frac{X}{|Y||Z}$ is an instance of a tableau expansion rule, either Y or Z is on ρ ,
 - if $\overline{Y_1} = \overline{Z_1}$ is an instance of a tableau expansion rule, either both Y_1 and Y_2 are $Y_2 = \overline{Z_2}$
 - on ρ , or else both Z_1 and Z_2 are on ρ ,
 - if $X = T \forall x A$, then $T A[a_i/x]$ is on ρ for all $i \leq n$,
 - if $X = F \exists x A$, then $F A[a_i/x]$ is on ρ for all $i \leq n$,
 - if $X = F \forall x A$, then F A[b/x] is on ρ for some b, and
 - if $X = T \exists x A$, then T A[b/x] is on ρ for some b.
- 14. Lemma. Any finite tableau \mathcal{T} for S can be extended to a finite tableau \mathcal{T}' for S in which every node of \mathcal{T} is fulfilled for n.

- 15. A tableau is *finished* if every open path obeys all tableau expansion rules relative to the set of parameters.
- 16. Lemma. For every set S of signed sentences, there is a finished tableau for S.

Proof. Let X_0, X_1, X_2, \ldots be an enumeration of the elements of S. We recursively define finite tableaux \mathcal{T}_n for S, for all natural numbers n. Let \mathcal{T}_0 be a tableau with just one node, labeled by X_0 . Now assume that \mathcal{T}_n has been defined. We take all the nodes of \mathcal{T}_n that are not yet fulfilled for n, and extend \mathcal{T}_n to \mathcal{T}'_n by fulfilling those nodes for n. Then we adjoin a new node labeled by X_{n+1} at the end of every open path in \mathcal{T}'_n . The result is \mathcal{T}_{n+1} . Having defined an infinite sequence $\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2, \ldots$ of finite tableaux for S, we let $\mathcal{T} = \bigcup_n \mathcal{T}_n$. It is easy to see that \mathcal{T} is a tableau, every node of \mathcal{T} is fulfilled for all n, and X_n is on every open path of \mathcal{T} for all n. Therefore, \mathcal{T} is a finished tableau for S.

- 17. Completeness Theorem. Every consistent set of signed sentences in first-order logic is satisfiable.
- 18. Compactness Theorem. Let S be a set of signed sentences. If every finite subset of S is satisfiable, then S is satisfiable.
- 19. Example of an application of the Compactness Theorem. Let R be a binary predicate. Every (finite or infinite) graph G = (V, E) determines an interpretation M_G in universe V such that R^{M_G} holds of (v_1, v_2) iff $\{v_1, v_2\} \in E$. Show that there is no sentence A of first-order logic such that $M_G \models A$ iff G is connected.

Consider $S' = \{A, \exists x((Rax \land \neg Rbx) \lor (Rxa \land \neg Rxb))\} \cup S$, where

$$S = \{ D_n \mid n \ge 0 \},$$

$$D_0 = \neg Rab,$$

$$D_n = \neg \exists x_1 \dots \exists x_n (Rax_1 \land Rx_1 x_2 \land \dots Rx_{n-1} x_n \land Rx_n b) \text{ for } n \ge 1.$$