
Kőnig’s Lemma and the Compactness Theorem for Propositional Logic

1. A tree domain is a subset D of the set of finite sequences of positive integers satisfying
the following condition:

• if 〈i1, . . . , in, k〉 ∈ D, then 〈i1, . . . , in〉 ∈ D, and for all j < k, 〈i1, . . . , in, j〉 ∈ D.

If v = 〈i1, . . . , in〉 and w = 〈j1, . . . , jm〉, then we write v_w for 〈i1, . . . , in, j1, . . . , jm〉.
2. A labeled ordered tree is 〈D,L, `〉, where

• D is a tree domain (the set of nodes),

• L is a set of labels, and

• ` : D → L.

In a labeled ordered tree 〈i1, . . . , in, k〉 is the k-th child of 〈i1, . . . , in〉. 〈〉 (the empty
sequence) is the root. The level of a node 〈i1, . . . , in〉 is n. (Thus the level of the root
is 0.) A path is a (finite or infinite) sequence of nodes of the form

〈〉, 〈i1〉, 〈i1, i2〉, . . . .

In this course, a path is assumed to be maximal—that is to say, when a path is finite, it
is assumed that the last node is a leaf (i.e., a node without children). A tree is finitely
branching iff all nodes in it have only finitely many children.

3. Let T = 〈D,L, `〉 be a labeled ordered tree, and let w = 〈i1, . . . , in〉 be a node of T .
The subtree of T rooted at w is T ′ = 〈D′, L, `′〉, where

D′ = { v | w_v ∈ D },
`′(v) = `(w_v).

4. Kőnig’s Lemma. Every infinite tree that is finitely branching has an infinite path.

Proof. Let T be a finitely branching, infinite tree. For each natural number n, we
define a node vn of T such that the subtree of T rooted at vn is infinite. The sequence
v0, v1, v2, . . . will be an infinite path of T . First we let v0 = 〈〉 (the root of T ). The
subtree of T rooted at v0 is T itself, and so is infinite by assumption. Assume that
vn has been defined, and the subtree of T rooted at vn is infinite. Since vn has only
finitely many children, there must be a child node w of vn such that the subtree rooted
at w is infinite. We take any such w and let vn+1 = w.

5. Exercise. From Raymond M. Smullyan, “Trees and ball games”, Annals of the New
York Academy of Sciences 321(1), 86–90, 1979.

We consider the following one-man game: We have an infinite supply
of (pool) balls numbered 1, an infinite supply of balls numbered 2, and for
each positive integer n, we have infinitely may balls numbered n. We shall
sometimes refer to the number on a ball as the rank of the ball. We shall
imagine all these infinitely many balls as lying on an (infinite) floor. On a
table is lying a box with infinite capacity. In this box is lying a finite number
of pool balls (each ball in the box has a number, just like the balls on the
floor). Now, the rule of the game is this: At any stage, the player may remove
from the box any ball and then replace it with any finite number of balls of
lower rank. For example, he may throw out a ball of rank 57 and replace it
with a billion balls of rank 56, or rank 48, or some of one rank and some of
another, providing all the ranks are less than 57. If the player throws out
a ball of rank 1, he can’t replace it with anything. If ever the box becomes
empty, the player loses.

The problem is whether the player must eventually lose, or whether (with
sufficient ingenuity) he can keep the process going forever. On the one hand
it might seem that if there is at least one ball of rank higher than 1, we can
get as large a finite number of balls in the box as we please, hence we should
be able to keep the process going forever. On the other hand, it might seem
that even a single ball of a given rank n is somehow “worth more” than any
finite number of balls of lower rank; hence every move we make is somehow
“worsening” our situation. Which is really the case?
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6. Infinite tableaux. We say that a finite tableau T2 for S is an immediate extension of a
finite tableau T1 for S if one of the following holds:

• T2 results from an application of a tableau expansion rule to T1.

• T2 results from adjoining a node labeled by some Y ∈ S at the end of some path
in T1.

If T0, T1, T2, . . . is an infinite sequence of finite tableaux for S such that

• T0 is a tableau with just one node, and

• for every n, Tn+1 is an immediate extension of Tn,

then ⋃
n

Tn

is an (infinite) tableau for S. Here,
⋃

n〈Dn, Ln, `n〉 is defined to be 〈
⋃

nDn,
⋃

n Ln,
⋃

n `n〉.
Note that

⋃
n `n is a well-defined function from

⋃
nDn to

⋃
n Ln.

7. The definition of a (finite or infinite) path obeying a tableau expansion rule is as before.
The notions of a finished path and of a finished tableau apply to infinite tableaux with
no change.

8. We say that a node labeled by X in a tableau is fulfilled iff for every open path P that
goes through the node, the following hold:

• if
X
Y

is an instance of a tableau expansion rule, Y is on P ,

• if
X
Y1
Y2

is an instance of a tableau expansion rule, both Y1 and Y2 are on P ,

• if
X

Y Z
is an instance of a tableau expansion rule, either Y or Z is on P , and

• if
X

Y1 Z1

Y2 Z2

is an instance of a tableau expansion rule, either Y1 and Y2 are on P ,

or else Z1 and Z2 are on P .

It is easy to see that, given a finite tableau T and some unfulfilled nodes v1, . . . , vk of
T , we can find a finite tableau T ′ that extends T where v1, . . . , vk are fulfilled. (Just
apply suitable tableau expansion rules to all open paths that go through v1, . . . , vk, in
turn.)

9. Lemma. For every (countably infinite)1 set S of signed formulas, there is a finished
tableau for S. (Note that if S is infinite, any finished tableau for S must be either
closed or infinite.)

Proof. Let X0, X1, X2, . . . be an enumeration of the elements of S. We recursively
define finite tableaux Tn for S, for all natural numbers n. Let T0 be a tableau with just
one node, labeled by X0. Now assume that Tn has been defined. We take all the nodes
of Tn of level n that are not yet fulfilled, and extend Tn to T ′

n by fulfilling those nodes.
Then we adjoin a new node labeled by Xn+1 at the end of every open path in T ′

n. The
result is Tn+1. Having defined an infinite sequence T0, T1, T2, . . . of finite tableaux for
S, we let T =

⋃
n Tn. It is easy to see that T is a tableau, every node of T is fulfilled,

and for all n, Xn is on every open path of T . Therefore, T is a finished tableau for S.

10. Lemma. If there is a closed tableau for S, there is a finite closed tableau for S.

Proof. Let T be a closed tableau for S. If T is finite, we are done, so assume that T
is infinite. Let Tn be as in the definition of infinite tableaux, so that T =

⋃
n Tn and

each Tn+1 is a tableau for S extending Tn. We call a node v of T contradictory if for
some A, both T A and F A appear at nodes above v (not including the node v itself),

1Since we assumed that there are countably many propositional variables, there are only countably many
signed formulas.
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on a path going through v. Let T ′ be the result of removing all contradictory nodes
from T .

Claim 1. The set of nodes of T ′ is a tree domain. It is easy to see that the parent of
a non-contradictory node is non-contradictory, and any sibling of a non-contradictory
node is non-contradictory.

Claim 2. T ′ is finite. T ′ is a finitely branching tree because T is. By Kőnig’s Lemma,
it suffices to show that T ′ has no infinite path. Suppose that T ′ has an infinite path
ρ. Then ρ must be a path in T . Since every node on ρ is non-contradictory, there is
no formula A such that both T A and F A appear on ρ. So ρ is an open path in T ,
contradicting the assumption that T is a closed tableau.

Claim 3. For every path ρ in T ′, there is a formula A such that both T A and F A
appear on ρ. Let ρ be a path in T ′ ending in leaf v. If v is a leaf in T , ρ is a path
in T . Since every path of T is closed, there must be some A such that both T A and
F A appear on ρ. Suppose that v has a child u in T . Since u is not a node of T ′, u is
contradictory. So there must be some A such that both T A and F A appear on ρ.

Since T ′ is finite and T =
⋃

n Tn, there exists some i such that Ti contains all nodes of
T ′. Suppose that Ti has an open path ρ ending in leaf v. Then v is a non-contradictory
node in T , so v is a node in T ′. This implies that ρ is a path in T ′, contradicting Claim
3. Therefore, Ti is a finite closed tableau for S.

Note: Since some tableau expansion rules simultaneously add two nodes to one path, T ′

may not be a tableau, although it is very close to being one. Smullyan actually allows
those tableau expansion rules to add just one node, so according to his definition, T ′

would be a tableau.

11. Exercise. Show that the finished tableau constructed by the procedure in Lemma (9)
is either an open tableau or a finite closed tableau.

12. Completeness Theorem (for the general case). Every (finite or countably infinite) con-
sistent set of signed formulas is satisfiable.

Proof. Suppose that S = {Xi | i ∈ N } is a consistent set of signed formulas. There
must be a finished tableau T for S. Since there is no finite closed tableau for S, T
must be an open tableau for S. By the Lemma for the Completeness Theorem (26 of
“Tableaux for propositional logic”), S is satisfiable.

13. Compactness Theorem. Let S be a countably infinite set of signed formulas. If every
finite subset of S is satisfiable, then S is satisfiable.

Proof. Suppose that S is unsatisfiable. By the Completeness Theorem, S is inconsistent,
i.e., there is a finite closed tableau T for S. Since T is finite, there is some finite subset
S0 of S such that T is a tableau for S0. By the Soundness Theorem, S0 is unsatisfiable.

14. A graph is a structure G = (V,E), where V is a set of vertices and E is a set of
unordered pairs of distinct elements of V (i.e., E ⊆ {{u, v} | u, v ∈ V, u 6= v }. If
{u, v} ∈ E, u and v are said to be adjacent. Let G = (V,E) be a graph and let k
be a positive integer. A k-coloring of G is a function f : V → {1, . . . , k} such that
f(u) 6= f(v) whenever u and v are adjacent. (The condition f(v) = i means “vertex v
gets color i”.) A graph G is said to be k-colorable iff there exists a k-coloring of G.

15. Exercise. Let G = (V,E) be a graph and k be a positive integer. For each vertex v and
each i = 1, . . . , k, let pvi be a propositional variable. We interpret pvi to mean “vertex
v gets color i”. Define Ck(G) to be the set consisting of the following formulas:

• pv1 ∨ · · · ∨ pvk for each v ∈ V ,

• ¬(pvi ∧ pvj) for each v ∈ V and 1 ≤ i < j ≤ k, and

• ¬(pui ∧ pvi) for each {u, v} ∈ E and 1 ≤ i ≤ k.

(a) Show that there is a one-to-one correspondence between k-colorings of G and
assignments satisfying Ck(G).

(b) Show that G is k-colorable if and only if Ck(G) is satisfiable.

(c) Show that G is k-colorable if and only if each finite subgraph of G is k-colorable.
(This is known as the de Bruijn-Erdős theorem.)
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