Propositional Logic

1. Language of propositional logic

- propositional variables: $p_{1}, p_{2}, p_{3}, \ldots \quad p, q, r, s, \ldots$
- inductive definition of formulas:
(a) If p is a propositional variable, p is a formula.
(b) If A is a formula, $\neg A$ is a formula.
(c) If A and B are formulas, then

$$
(A \wedge B) \quad(A \vee B) \quad(A \rightarrow B) \quad(A \leftrightarrow B)
$$

are formulas.
Let \mathbb{P} denote the set of propositional variables, and \mathbb{F} denote the set of formulas.
2. Example: $\left(\left(\left(\left(p_{1} \rightarrow p_{2}\right) \wedge\left(p_{2} \vee p_{3}\right)\right) \rightarrow\left(p_{1} \vee p_{3}\right)\right) \rightarrow \neg\left(p_{2} \vee p_{4}\right)\right)$
3. Proof by induction. If a set \mathcal{X} satisfies the following conditions, then $\mathbb{F} \subseteq \mathcal{X}$.

- $\mathbb{P} \subseteq \mathcal{X}$
- $A \in \mathcal{X}$ implies $\neg A \in \mathcal{X}$
- $A \in \mathcal{X}$ and $B \in \mathcal{X}$ imply $(A b B) \in \mathcal{X}$ for each $b \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$.

4. Exercise. Prove that for every formula $A \in \mathbb{F}$, the number of occurrences of propositional variables in A is the number of occurrences of '(' (open parenthesis) plus 1.
5. Convention: Omit outermost pair of parentheses: $\left(\left(\left(p_{1} \rightarrow p_{2}\right) \wedge\left(p_{2} \vee p_{3}\right)\right) \rightarrow\left(p_{1} \vee p_{3}\right)\right) \rightarrow$ $\neg\left(p_{2} \vee p_{4}\right)$
6. Unique Readability. For every formula A, exactly one of the following holds:
(a) $A=p$ for some propositional variable p.
(b) $A=\neg B$ for some formula B.
(c) $A=\left(B_{1} b B_{2}\right)$ for some formulas B_{1}, B_{2} and $b \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$.

Moreover, in case $A=\neg B$, the choice of B is unique, and in case $A=\left(B_{1} b B_{2}\right)$, the choice of B_{1}, B_{2}, b is unique. The connective \neg (in case of (b)) or b (in case of (c)) is called the principal connective of A.
7. Recursive definition. Let \mathcal{S} be some set, and $g: \mathbb{P} \rightarrow \mathcal{S}, h_{\neg}: \mathcal{S} \rightarrow \mathcal{S}, h_{b}: \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{S}$ $(b \in\{\wedge, \vee, \rightarrow, \leftrightarrow\})$ be some functions. The following set of equations defines a function $f: \mathbb{F} \rightarrow \mathcal{S}$.

- $f(p)=g(p)$ for each $p \in \mathbb{P}$,
- $f(\neg A)=h_{\neg}(f(A))$ for each $A \in \mathbb{F}$,
- $f(A b B)=h_{b}(f(A), f(B))$ for each $A, B \in \mathbb{F}$ and $b \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$.

8. Example. The height of $A \in \mathbb{F}$ is defined by

$$
\begin{aligned}
h(p) & =0 & & \text { for } p \in \mathbb{P}, \\
h(\neg A) & =h(A)+1 & & \text { for } A \in \mathbb{F}, \\
h(A b B) & =\max (h(A), h(B))+1 & & \text { for } A, B \in \mathbb{F} \text { and } b \in\{\wedge, \vee, \rightarrow, \leftrightarrow\} .
\end{aligned}
$$

9. Subformulas:

$$
\begin{aligned}
\operatorname{Sub}(p) & =\{p\} \\
\operatorname{Sub}(\neg A) & =\{\neg A\} \cup \operatorname{Sub}(A) \\
\operatorname{Sub}(A b B) & =\{A b B\} \cup \operatorname{Sub}(A) \cup \operatorname{Sub}(B)
\end{aligned}
$$

10. Proposition. If $A \in \operatorname{Sub}(B)$, then $\operatorname{Sub}(A) \subseteq \operatorname{Sub}(B)$.
11. Formation tree for A : a labeled ordered binary (i.e., at most binary-branching) tree such that

- each node is labeled by a subformula of A,
- the root is labeled by A,
- each node labeled by $\neg B$ has a node labeled by B as its only child,
- each node labeled by $B b C$ has a node labeled by B and a node labeled by C, in this order, as its only children,
- each node labeled by p is a leaf.

12. Example: In abbreviated notation,

13. Truth values: t, f
14. Truth assignment:

$$
M: \mathbb{P} \rightarrow\{t, f\}
$$

15. If M is a truth assignment, extend M to valuation

$$
v_{M}: \mathbb{F} \rightarrow\{t, f\}
$$

by

$$
\begin{aligned}
v_{M}(p) & =M(p) \\
v_{M}(\neg A) & = \begin{cases}t & \text { if } v_{M}(A)=f, \\
f & \text { if } v_{M}(A)=t,\end{cases} \\
v_{M}(A \wedge B) & = \begin{cases}t & \text { if } v_{M}(A)=v_{M}(B)=t, \\
f & \text { otherwise },\end{cases} \\
v_{M}(A \vee B) & = \begin{cases}t & \text { if at least one of } v_{M}(A)=t \text { and } v_{M}(B)=t \text { holds }, \\
f & \text { otherwise },\end{cases} \\
v_{M}(A \rightarrow B) & = \begin{cases}t & \text { if at least one of } v_{M}(A)=f \text { and } v_{M}(B)=t \text { holds }, \\
f & \text { otherwise },\end{cases} \\
v_{M}(A \leftrightarrow B) & = \begin{cases}t & \text { if } v_{M}(A)=v_{M}(B) \\
f & \text { otherwise }\end{cases}
\end{aligned}
$$

16. Proposition. If M_{1} and M_{2} agree on the propositional variables in $\operatorname{Sub}(A)$, then $v_{M_{1}}(A)=v_{M_{2}}(A)$.
17. Truth table for A

q_{1}, \ldots, q_{n} : propositional variables in $S u b(A)$. Each row expresses $v_{M}(A)=b$ for all M such that $M\left(q_{1}\right)=b_{1}, \ldots, M\left(q_{n}\right)=b_{n}$.
18. Example.

p	q	r	$(p \wedge \neg q) \rightarrow \neg(p \vee r)$
t	t	t	t
t	t	f	t
t	f	t	f
t	f	f	f
f	t	t	t
f	t	f	t
f	f	t	t
f	f	f	t

19. Let M be an assignment, A be a formula, and S be a set of formulas.

- A is true under M iff $v_{M}(A)=t$, false under M iff $v_{M}(A)=f$.
- M satisfies A iff A is true under M.
- A is satisfiable iff at least one assignment satisfies A.
- M satisfies S iff M satisfies all A in S.
- A is truth-functionally valid (or is a tautology) iff A is true under all assignments.
- A is a truth-functional consequence of S iff all assignments that satisfy S satisfy A.
- A is truth-functionally equivalent to B iff A and B are true under the same assignments.

20. Proposition.
(a) A is a tautology iff $\neg A$ is not satisfiable.
(b) B is a truth-functional consequence of $\{A\}$ iff $A \rightarrow B$ is a tautology.
(c) A is truth-functionally equivalent to B iff $A \leftrightarrow B$ is a tautology.
21. Proposition. Let A be a formula and let p_{1}, \ldots, p_{n} be the list of all propositional variables in A. If A is a tautology, then so is $A\left[B_{1} / p_{1}, \ldots, B_{n} / p_{n}\right]$ for any formulas B_{1}, \ldots, B_{n}, where $A\left[B_{1} / p_{1}, \ldots, B_{n} / p_{n}\right]$ is obtained from A by replacing p_{i} with B_{i} for $i=1, \ldots, n$.
22. Example.
(a) $((A \rightarrow B) \rightarrow A) \rightarrow A$ is a tautology (for all $A, B)$. (Peirce's Law)
(b) $(A \wedge B) \rightarrow C$ is truth-functionally equivalent to $A \rightarrow(B \rightarrow C)$.
23. Write $A \equiv B$ for " A is truth-functionally equivalent to B ".
24. Proposition. If $A_{1} \equiv A_{2}$, then
(a) $\neg A_{1} \equiv \neg A_{2}$
(b) $A_{1} \wedge B \equiv A_{2} \wedge B$
(c) $B \wedge A_{1} \equiv B \wedge A_{2}$
(d) $A_{1} \vee B \equiv A_{2} \vee B$
(e) $B \vee A_{1} \equiv B \vee A_{2}$
(f) $A_{1} \rightarrow B \equiv A_{2} \rightarrow B$
(g) $B \rightarrow A_{1} \equiv B \rightarrow A_{2}$
(h) $A_{1} \leftrightarrow B \equiv A_{2} \leftrightarrow B$
(i) $B \leftrightarrow A_{1} \equiv B \leftrightarrow A_{2}$
25. Proposition. If $A_{1} \equiv A_{2}$, then $B \equiv B^{\prime}$, where B^{\prime} is the result of replacing one or more occurrences of A_{1} in B by A_{2}.
26. Convention: Write

$$
\begin{array}{lll}
A_{1} \vee \cdots \vee A_{n} & \text { for } & \left(\ldots\left(A_{1} \vee A_{2}\right) \vee \ldots\right) \vee A_{n} \\
B_{1} \wedge \cdots \wedge B_{n} & \text { for } & \left(\ldots\left(B_{1} \wedge B_{2}\right) \wedge \ldots\right) \wedge B_{n}
\end{array}
$$

This is justified by $A \vee(B \vee C) \equiv(A \vee B) \vee C$ and $A \wedge(B \wedge C) \equiv(A \wedge B) \wedge C$.
27. A literal is a propositional variable p or its negation $\neg p$.
28. A is in disjunctive normal form if it is of the form $A_{1} \vee \cdots \vee A_{m}$ where each A_{i} is of the form $l_{1} \wedge \cdots \wedge l_{n}$ where each l_{j} is a literal.
29. Proposition. Every formula is truth-functionally equivalent to one in disjunctive normal form.
30. Example. $(p \rightarrow q) \rightarrow r$ has the following truth table:

p	q	r	$(p \rightarrow q) \rightarrow r$
t	t	t	t
t	t	f	f
t	f	t	t
t	f	f	t
f	t	t	t
f	t	f	f
f	f	t	t
f	f	f	f

Therefore, $(p \rightarrow q) \rightarrow r$ is truth-functionally equivalent to

$$
(p \wedge q \wedge r) \vee(p \wedge \neg q \wedge r) \vee(p \wedge \neg q \wedge \neg r) \vee(\neg p \wedge q \wedge r) \vee(\neg p \wedge \neg q \wedge r)
$$

31. Exercise. Give an efficient algorithm for solving the following problem:

DNF SATISFIABILITY

INSTANCE: A propositional formula A in disjunctive normal form. QUESTION: Is A satisfiable?
32. Exercise. Consider the following puzzle:

Imagine an island inhabited by two types of people, Liars and Truth-Tellers. If a person X is a Liar, everything X says is false, while if X is a TruthTeller, everything X says is true. Suppose H and K are two inhabitants of this island. Suppose H said: "At least one of H and K is a Liar." Who of H and K is a Liar?

The solution to this puzzle is as follows. Assume H is a Liar. Then what H said is false, so neither H nor K is a Liar. This is a contradiction. So H is not a Liar, and what H said is true. Since H is not a Liar, K must be a Liar.
This puzzle can be more systematically solved using truth tables. Let p stand for " H is a Liar", and q for " K is a Liar." Then what H said is $p \vee q$. The assumption of this puzzle is that p and what H said have opposite truth values. See the truth table for $p \vee q$:

p	q	$p \vee q$
t	t	t
t	f	t
f	t	t
f	f	f

The only row in which the truth values of p and $p \vee q$ differ is the third row. So p is false and q is true.
(a) Under the same assumptions, suppose H said: "Either H is a Liar or K is not a Liar." What can you conclude from H 's statement?
(b) Under the same assumptions, suppose H said something and from H 's statement it followed that K is not a Liar, but no conclusion was drawn as to whether or not H is a Liar. What $\operatorname{did} H$ say?
(c) Let A be what H said and B be what can be concluded from the fact that H said A. What is the relation between A and B ?

