
Propositional Logic

1. Language of propositional logic

• propositional variables: p1, p2, p3, . . . p, q, r, s, . . .

• inductive definition of formulas:

(a) If p is a propositional variable, p is a formula.
(b) If A is a formula, ¬A is a formula.
(c) If A and B are formulas, then

(A ∧B) (A ∨B) (A→ B) (A↔ B)

are formulas.

Let P denote the set of propositional variables, and F denote the set of formulas.

2. Example:
(
(((p1 → p2) ∧ (p2 ∨ p3))→ (p1 ∨ p3))→ ¬(p2 ∨ p4)

)
3. Proof by induction. If a set X satisfies the following conditions, then F ⊆ X .

• P ⊆ X
• A ∈ X implies ¬A ∈ X
• A ∈ X and B ∈ X imply (A b B) ∈ X for each b ∈ {∧,∨,→,↔}.

4. Exercise. Prove that for every formula A ∈ F, the number of occurrences of proposi-
tional variables in A is the number of occurrences of ‘(’ (open parenthesis) plus 1.

5. Convention: Omit outermost pair of parentheses: (((p1 → p2)∧(p2∨p3))→ (p1∨p3))→
¬(p2 ∨ p4)

6. Unique Readability. For every formula A, exactly one of the following holds:

(a) A = p for some propositional variable p.

(b) A = ¬B for some formula B.

(c) A = (B1 b B2) for some formulas B1, B2 and b ∈ {∧,∨,→,↔}.

Moreover, in case A = ¬B, the choice of B is unique, and in case A = (B1 b B2), the
choice of B1, B2, b is unique. The connective ¬ (in case of (b)) or b (in case of (c)) is
called the principal connective of A.

7. Recursive definition. Let S be some set, and g : P → S, h¬ : S → S, hb : S × S → S
(b ∈ {∧,∨,→,↔}) be some functions. The following set of equations defines a function
f : F→ S.

• f(p) = g(p) for each p ∈ P,

• f(¬A) = h¬(f(A)) for each A ∈ F,

• f(A b B) = hb(f(A), f(B)) for each A,B ∈ F and b ∈ {∧,∨,→,↔}.

8. Example. The height of A ∈ F is defined by

h(p) = 0 for p ∈ P,

h(¬A) = h(A) + 1 for A ∈ F,

h(A b B) = max(h(A), h(B)) + 1 for A,B ∈ F and b ∈ {∧,∨,→,↔}.

9. Subformulas:

Sub(p) = {p}
Sub(¬A) = {¬A} ∪ Sub(A)

Sub(A b B) = {A b B} ∪ Sub(A) ∪ Sub(B)

10. Proposition. If A ∈ Sub(B), then Sub(A) ⊆ Sub(B).

11. Formation tree for A: a labeled ordered binary (i.e., at most binary-branching) tree
such that
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• each node is labeled by a subformula of A,

• the root is labeled by A,

• each node labeled by ¬B has a node labeled by B as its only child,

• each node labeled by B b C has a node labeled by B and a node labeled by C, in
this order, as its only children,

• each node labeled by p is a leaf.

12. Example: In abbreviated notation,

→

→

∧

→

p1 p2

∨

p2 p3

∨

p1 p3

¬

∨

p2 p4

13. Truth values: t, f

14. Truth assignment:
M : P→ {t, f}

15. If M is a truth assignment, extend M to valuation

vM : F→ {t, f}

by

vM (p) = M(p)

vM (¬A) =

{
t if vM (A) = f ,

f if vM (A) = t,

vM (A ∧B) =

{
t if vM (A) = vM (B) = t,

f otherwise,

vM (A ∨B) =

{
t if at least one of vM (A) = t and vM (B) = t holds,

f otherwise,

vM (A→ B) =

{
t if at least one of vM (A) = f and vM (B) = t holds,

f otherwise,

vM (A↔ B) =

{
t if vM (A) = vM (B),

f otherwise.

16. Proposition. If M1 and M2 agree on the propositional variables in Sub(A), then
vM1(A) = vM2(A).

17. Truth table for A
q1 . . . qn A
t . . . t

...
b1 . . . bn b

...
f . . . f

q1, . . . , qn: propositional variables in Sub(A). Each row expresses vM (A) = b for all M
such that M(q1) = b1, . . . ,M(qn) = bn.
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18. Example.
p q r (p ∧ ¬q)→ ¬(p ∨ r)
t t t t
t t f t
t f t f
t f f f
f t t t
f t f t
f f t t
f f f t

19. Let M be an assignment, A be a formula, and S be a set of formulas.

• A is true under M iff vM (A) = t, false under M iff vM (A) = f .

• M satisfies A iff A is true under M .

• A is satisfiable iff at least one assignment satisfies A.

• M satisfies S iff M satisfies all A in S.

• A is truth-functionally valid (or is a tautology) iff A is true under all assignments.

• A is a truth-functional consequence of S iff all assignments that satisfy S satisfy
A.

• A is truth-functionally equivalent to B iff A and B are true under the same as-
signments.

20. Proposition.

(a) A is a tautology iff ¬A is not satisfiable.

(b) B is a truth-functional consequence of {A} iff A→ B is a tautology.

(c) A is truth-functionally equivalent to B iff A↔ B is a tautology.

21. Proposition. Let A be a formula and let p1, . . . , pn be the list of all propositional
variables in A. If A is a tautology, then so is A[B1/p1, . . . , Bn/pn] for any formulas
B1, . . . , Bn, where A[B1/p1, . . . , Bn/pn] is obtained from A by replacing pi with Bi for
i = 1, . . . , n.

22. Example.

(a) ((A→ B)→ A)→ A is a tautology (for all A,B). (Peirce’s Law)

(b) (A ∧B)→ C is truth-functionally equivalent to A→ (B → C).

23. Write A ≡ B for “A is truth-functionally equivalent to B”.

24. Proposition. If A1 ≡ A2, then

(a) ¬A1 ≡ ¬A2

(b) A1 ∧B ≡ A2 ∧B

(c) B ∧A1 ≡ B ∧A2

(d) A1 ∨B ≡ A2 ∨B

(e) B ∨A1 ≡ B ∨A2

(f) A1 → B ≡ A2 → B

(g) B → A1 ≡ B → A2

(h) A1 ↔ B ≡ A2 ↔ B

(i) B ↔ A1 ≡ B ↔ A2

25. Proposition. If A1 ≡ A2, then B ≡ B′, where B′ is the result of replacing one or more
occurrences of A1 in B by A2.

26. Convention: Write

A1 ∨ · · · ∨An for
(
. . . (A1 ∨A2) ∨ . . .

)
∨An

B1 ∧ · · · ∧Bn for
(
. . . (B1 ∧B2) ∧ . . .

)
∧Bn

This is justified by A ∨ (B ∨ C) ≡ (A ∨B) ∨ C and A ∧ (B ∧ C) ≡ (A ∧B) ∧ C.
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27. A literal is a propositional variable p or its negation ¬p.

28. A is in disjunctive normal form if it is of the form A1 ∨ · · · ∨ Am where each Ai is of
the form l1 ∧ · · · ∧ ln where each lj is a literal.

29. Proposition. Every formula is truth-functionally equivalent to one in disjunctive normal
form.

30. Example. (p→ q)→ r has the following truth table:

p q r (p→ q)→ r
t t t t
t t f f
t f t t
t f f t
f t t t
f t f f
f f t t
f f f f

Therefore, (p→ q)→ r is truth-functionally equivalent to

(p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ r) ∨ (p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ q ∧ r) ∨ (¬p ∧ ¬q ∧ r)

31. Exercise. Give an efficient algorithm for solving the following problem:

DNF SATISFIABILITY
INSTANCE: A propositional formula A in disjunctive normal form.
QUESTION: Is A satisfiable?

32. Exercise. Consider the following puzzle:

Imagine an island inhabited by two types of people, Liars and Truth-Tellers.
If a person X is a Liar, everything X says is false, while if X is a Truth-
Teller, everything X says is true. Suppose H and K are two inhabitants of
this island. Suppose H said: “At least one of H and K is a Liar.” Who of
H and K is a Liar?

The solution to this puzzle is as follows. Assume H is a Liar. Then what H said is
false, so neither H nor K is a Liar. This is a contradiction. So H is not a Liar, and
what H said is true. Since H is not a Liar, K must be a Liar.

This puzzle can be more systematically solved using truth tables. Let p stand for “H
is a Liar”, and q for “K is a Liar.” Then what H said is p∨ q. The assumption of this
puzzle is that p and what H said have opposite truth values. See the truth table for
p ∨ q:

p q p ∨ q
t t t
t f t
f t t
f f f

The only row in which the truth values of p and p ∨ q differ is the third row. So p is
false and q is true.

(a) Under the same assumptions, suppose H said: “Either H is a Liar or K is not a
Liar.” What can you conclude from H’s statement?

(b) Under the same assumptions, suppose H said something and from H’s statement
it followed that K is not a Liar, but no conclusion was drawn as to whether or
not H is a Liar. What did H say?

(c) Let A be what H said and B be what can be concluded from the fact that H said
A. What is the relation between A and B?
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