
Makoto Kanazawa
February 8, 2012

Context-free tree grammars
A ranked alphabet is a union ∆ =

⋃
r∈N ∆(r) of disjoint sets of symbols. If f ∈ ∆(r),

r is the rank of f .
A tree over a ranked alphabet ∆ is a labeled ordered tree where each node

with n daughters is labeled by some f ∈ ∆(n). It is convenient to use the term
representation of trees. The set T∆ of trees over a ranked alphabet ∆ is defined
inductively as follows:

1. If f ∈ ∆(0), then f ∈ T∆;

2. If f ∈ ∆(n) and t1, . . . , tn ∈ T∆ (n ≥ 1), then (f t1 . . . tn) ∈ T∆.

We usually omit the outermost pair of parentheses.
In what follows, we use a countably infinite supply of variables x1, x2, x3,

The set consisting of the first n variables is denoted Xn (i.e., Xn = {x1, . . . , xn}).
T∆(Xn) denotes the set of trees over ∆ ∪ Xn, where members of Xn all have rank
0. A tree in T∆(Xn) is often written t[x1, . . . , xn], displaying the variables. If
t[x1, . . . , xn] ∈ T∆(Xn) and t1, . . . , tn ∈ T∆, then t[t1, . . . , tn] denotes the result
of substituting t1, . . . , tn for x1, . . . , xn, respectively, in t[x1, . . . , xn]. An element
t[x1, . . . , xn] of T∆(Xn) is an n-context over ∆ if for each i = 1, . . . , n, xi occurs
exactly once in t[x1, . . . , xn]. (In the literature, an n-context is sometimes called a
simple tree in T∆(Xn).)

A context-free tree grammar (Rounds 1970, Engelfriet and Schmidt 1977) is
a quadruple G = (N,Σ, P, S), where

1. N is a ranked alphabet of nonterminals,

2. Σ is a ranked alphabet of terminals,

3. S is a nonterminal of rank 0, and

4. P is a finite set of productions of the form

Ax1 . . . xn → t[x1, . . . , xn],

where A ∈ N(n) and t[x1, . . . , xn] ∈ TN∪Σ(Xn).

For every u, v ∈ TN∪Σ, u ⇒G v is defined to hold if and only if there is a 1-
context c[x1] over N ∪ Σ, a production Ax1 . . . xn → t[x1, . . . , xn] in P, and trees
u1, . . . , un ∈ TN∪Σ such that

u = c[Au1 . . . un]

i

v = c[t[u1, . . . , un]].

The relation⇒∗G on TN∪Σ is defined as the reflexive transitive closure of⇒G.
The tree langauge generated by a context-free tree grammar G, denoted by L(G),
is defined as follows:

L(G) = { t ∈ TΣ | S ⇒∗G t }.

The string language generated by G is

yL(G) = { yield(t) | t ∈ L(G) }.

Consider a context-free tree grammar G1 = (N,Σ, P, S), where

N(0) = {S },

N(1) = {C},

N(k) = ∅ for all k ≥ 2,

Σ(0) = {a},

Σ(2) = {b},

Σ(k) = ∅ for all k < {0, 2},

and P consists of the following productions:

S → Ca,
Cx1 → x1,

Cx1 → C(bx1x1).

L(G1) consists of perfect binary trees where each internal node is labeled by b and
each leaf is labeled by a, and yL(G1) = { a2n

| n ≥ 0 }.
Consider G2 = (N,Σ, P, S), where

N(0) = {S },

N(2) = {F},

Σ(0) = {a},

Σ(2) = {b},

and P consists of the following productions:

S → Fa(ba(baa)),
Fx1x2 → x1,

ii

Fx1x2 → F(bx1x2)(bx2(baa)).

yL(G2) = { an2
| n ≥ 1 }.

Consider G3 = (N,Σ, P, S), where

N(0) = {S ,U},

N(1) = {D},

Σ(0) = {0},

Σ(1) = {s},

Σ(2) = {d},

and P consists of the following productions:

S → DU,
U → 0,
U → sU,

Dx1 → dx1x1.

L(G3) = { d(sn0)(sm0) | n,m ≥ 0 }, where si0 denotes

s(. . . (s︸ ︷︷ ︸
i times

0) . . .).

Consider a one-step derivation u⇒G v, where

u = c[Au1 . . . un],
v = c[t[u1, . . . , un]],

and Ax1 . . . xn → t[x1, . . . , xn] is a production. This one-step derivation is IO
(inside-out) and we write u ⇒G,IO v if u1, . . . , un ∈ TΣ. On the other hand, if
x1 does not occur inside an argument of any nonterminal in c[x1], the one-step
derivation is OI (outside-in) and we write u ⇒G,OI v. The IO tree language of G
is

LIO(G) = { t ∈ TΣ | S ⇒∗G,IO t }

and the IO string language of G is

yLIO(G) = { yield(t) | t ∈ LIO(G) }.

The OI tree langauge and OI string language of G are defined similarly.

iii

It is known that LOI(G) = L(G) for every context-free tree grammar G. It
follows that LIO(G) ⊆ LOI(G) for every G. The inclusion is in general proper (this
is so with the above example G3). The class of OI tree languages and the class of
IO tree languages are known to be incomparable.

Define

CFTIO = { LIO(G) | G is a CFTG },
CFTOI = { LOI(G) | G is a CFTG },

yCFTIO = { yLIO(G) | G is a CFTG },
yCFTOI = { yLOI(G) | G is a CFTG }.

yCFTIO (yCFTOI) coincides with the class of languages generated by macro gram-
mars (Fisher 1968) in the inside-out (outside-in) mode. It is known (Fisher 1968)
that yCFTOI equals the class of indexed languages (Aho 1968), which contains
some NP-complete languages (Rounds 1973). yCFTIO is included in LOGCFL
(Hunt 1976, Asveld 1981, Engelfriet 1986). The following Venn diagram holds
with IO = CFTIO,OI = CFTOI or IO = yCFTIO,OI = yCFTOI:

NP

P

LOGCFL
NP-complete

IO

OI

Exercise 1. Consider the context-free tree grammar G4 = (N,Σ, P, S), where

N(0) = {S },

N(2) = {C,T, F, A},

N(3) = {P},

Σ(0) = {0, true, false},
Σ(1) = {s,¬},

iv

Σ(2) = {∧,∨},

and P consists of the following productions:

S → P (s0) true false,
Px1x2x3 → Cx2x3,

Px1x2x3 → P(sx1)(Ax1x2)x3,

Px1x2x3 → P(sx1)x2(Ax1x3),
Cx1x2 → ∧(Cx1x2)(Cx1x2),
Cx1x2 → T x1x2,

T x1x2 → ∨(T x1x2)(T x1x2),
T x1x2 → ∨(T x1x2)(Fx1x2),
T x1x2 → ∨(Fx1x2)(T x1x2),
Fx1x2 → ∨(Fx1x2)(Fx1x2),
T x1x2 → x1,

T x1x2 → ¬x2,

Fx1x2 → ¬x1,

Fx1x2 → x2,

Ax1x2 → x1,

Ax1x2 → x2.

We abbreviate s(. . . (s︸ ︷︷ ︸
i times

0) . . .) by si0.

1. Is the following tree in LOI(G4)? Is it in LIO(G4)?

∧(∨(s10)(∨(¬(s20))(s30)))(∧(∨(¬(s10))(∨(s20)(s30)))(∨(¬(s10))(∨(s20)(¬(s30)))))

2. Is the following tree in LOI(G4)?

∧(∨(¬(s10))(s20))(∧(∨(s10)(s20))(∨(s10)(¬(s20))))

3. Give an example of a tree in LIO(G4).

4. Can you describe LOI(G4)?

A production

Ax1 . . . xn → t[x1, . . . , xn]

v

is linear if for each i = 1, . . . , n, xi occurs in t[x1, . . . , xn] at most once. It is non-
deleting if for each i = 1, . . . , n, xi occurs in t[x1, . . . , xn] at least once. A context-
free tree grammar is linear if all its productions are linear, and it is nondeleting if
all its productions are nondeleting. A linear and nondeleting CFTG is called sim-
ple. It is known that if G is linear, LIO(G) = LOI(G) (Kepser and Mönnich 2006).
Let CFTsp = { L(G) | G is a simple CFTG }. Then, CFTsp ⊆ CFTIO ∩ CFTOI.

Consider the tree-adjoining grammar G = (N,Σ,I ,A), where N = {S , A},
Σ = {a, b, c, d, e},I = {α},A = {β}, and

α =

S

A

e , β =

ANA

a A

b A∗NA c

d

Define a simple CFTG G′ = (N′,Σ′, P′, S ′) as follows:

N′(0) = {S ′},

N′(1) = {A′},

Σ′(0) = {a, b, c, d, e},

Σ′(1) = {A1},

Σ′(3) = {A3},

P′ =


S ′→ S (A′(A1e)),

A′x1→ x1,
A′x1→ A3a(A′(A3b(A1x1)c))d

 .
Then L(G) and L(G′) are identical except for the labels A, ANA in the former and
A1, A3 in the latter.

The class of tree languages of tree-adjoining grammars is included in the class
of tree languages generated by monadic simple context-free tree grammars. These
classes of grammars are equivalent on the level of string languages (Fujiyoshi and
Kasai 2000, Mönnich 1997), and almost so on the level of tree languages (Kepser
and Rogers 2011).

References
Alfred V. Aho. 1968. Indexed grammars—An extension of context-free gram-

mars. Journal of the Association for Computing Machinery 15, 647–671.

Peter R. Asveld. 1981. Time and space complexity of inside-out macro languages.
International Journal of Computer Mathematics 10, 3–14.

vi

Huber Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez,
Sophie Tison, and Marc Tommasi. 2007. Tree Automata Techniques and Ap-
plications. Available online at http://tata.gforge.inria.fr/.

Joost Engelfriet. 1986. The complexity of languages generated by attribute gram-
mars. SIAM Journal on Computing 15, 70–86.

Joost Engelfriet and Erik Meineche Schmidt. 1977. IO and OI. I. Journal of
Computer and System Sciences 15, 328–353.

Michael J. Fisher. 1968. Grammars with Macro-Like Productions. Ph.D. disser-
tation. Harvard University.

A. Fujiyoshi and T. Kasai. 2000. Spinal-formed context-free tree grammars. The-
ory of Computing Systems 33, 59–83.

H. B. Hunt. 1976. On the complexity of finite, pushdown, and stack automata.
Mathematical Systems Theory 10, 33–52.

Stephan Kepser and Uwe Mönnich. 2006. Closure properties of linear context-
free tree languages with an application to optimality theory. Theoretical Com-
puter Science 354, 82–97.

Uwe Mönnich. 1997. Adjunction as substitution: An algebraic formulation of
regular, context-free and tree ajoining languages. In Proceedings of the Third
Conference on Formal Grammar.

Stephan Kepser and Jim Rogers. 2011. The equivalence of tree adjoining gram-
mars and monadic linear context-free tree grammars. Journal of Logic, Lan-
guage and Information 20, 361–384.

William C. Rounds. 1970. Mappings and grammars on trees. Mathematical
Systems Theory 4, 257–287.

William C. Rounds. 1973. Complexity of recognition in intermediate-level lan-
guages. In 14th Annual IEEE Symposium on Switching and Automata Theory,
pages 145–158. IEEE Computer Society.

vii

