Pumping Lemma for $m-\mathrm{MCFL}_{w n}$

Theorem (Kanazawa 2009). $L \in m-M C F L_{w n} \Rightarrow L$ is $2 m$-iterative.

The proof of the Pumping Lemma for $m-\mathrm{MCFL}_{w n}$ is more complex.

Pumping Lemma for PDA

stack
height

- \neg (All but finitely many accepting computations reach stack height $|Q|^{2}$)
- $\{w \mid w$ has an accepting computation that doesn't reach stack height $\left.|Q|^{2}\right\}$ is regular

The proof in each case is somewhat similar to the proof of the pumping lemma for CFLs using PDA, rather than CFG.

set of accepting computations of PDA M

accepts a regular set R accepts a 2-iterative set may be infinite

w has a derivation tree with even m-pump \Rightarrow w is $2 m$-pumpable

$$
\begin{gathered}
w=u_{0} v_{1} u_{1} \ldots v_{2 m} u_{2 m} \\
v_{1} \ldots v_{2 m} \neq \varepsilon \\
u_{0} v_{1}{ }^{n} u_{1} \ldots v_{2 m}^{n} u_{2 m} \in L(G) \text { for all } n \geq 0
\end{gathered}
$$

set of derivation trees of $G \in m-M_{C F G}{ }_{w n}$

without

even m-pump

with even m-pump

If the derivation tree contains an even m-pump, the string is $2 m$-pumpable. Otherwise, the string is in the language of some w.n. (m-1)-MCFG, and therefore is $2(m-1)-$ pumpable (disregarding finitely many exceptions). Proof by induction on m.

set of derivation trees of $G \in m-$ MCFG $_{w n}$

m-proper rules

$$
\begin{aligned}
& B\left(\mathbf{x}_{1} \mathbf{y}_{1} \mathbf{z}_{1}, \mathbf{z}_{2} \mathbf{y}_{2} a, \mathbf{y}_{3} b c \mathbf{x}_{2} \mathrm{~d}\right) \\
& A\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), B\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}\right), C\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)
\end{aligned}
$$

m-proper on the second subgoal

The "spine" of an even m-pump consists of m-proper rules

m-degree

- m-degree of a rule is 0 if dimention of lefthand side nonterminal $<m$
- otherwise m-degree = number of righthand side nonterminals of dimension m

$$
\begin{array}{cc}
B\left(\mathbf{x}_{1} \mathbf{y}_{1} \mathbf{X}_{2}, \mathbf{z}_{1} \mathbf{Y}_{2} a \mathbf{y}_{3} b, c \mathbf{z}_{2} d\right) & \leftarrow \\
A\left(\mathbf{X}_{1}, \mathbf{x}_{2}\right), B\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}\right), C\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right) & m=3 \\
m \text {-degree }=1 &
\end{array}
$$

Program Transformation

The proof of this claim is by successive transformations on the grammar.

$\pi_{1}: S\left(\mathbf{x}_{1} \mathbf{x}_{2}\right) \leftarrow B\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
 $\Pi_{2}: B\left(a \mathbf{x}_{1} b, c \mathbf{x}_{2} d\right) \leftarrow A\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \quad m$-proper rule $\pi_{3}: A\left(a x_{1} b x_{2} c, d\right) \leftarrow A\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ $\Pi_{4}: A(\varepsilon, \varepsilon) \leftarrow$
 $$
m=2
$$

\downarrow unfolding

A rule is m-proper if the head nonterminal is m-ary and there is an m-ary nonterminal on the right-hand side, each of whose arguments appear in the corresponding argument of the head nonterminal.
Unfold until there is no m-proper rule. This procedure terminates because the grammar does not allow an even m-pump.

$\pi_{1}: S\left(\mathbf{x}_{1} \mathbf{x}_{2}\right) \leftarrow B\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$

$\Pi_{5}: B\left(a a \mathbf{X}_{1} b \mathbf{X}_{2} c b, c d d\right) \leftarrow A\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right) \quad m$-degree $=1$
$\Pi_{6}: B(a b, c d) \leftarrow$
$\Pi_{3}: A\left(a \mathbf{x}_{1} b \mathbf{x}_{2} c, d\right) \leftarrow A\left(\mathbf{X}_{1}, \mathbf{x}_{2}\right) \quad m$-degree $=1$ $\Pi_{4}: A(\varepsilon, \varepsilon) \leftarrow$
\downarrow unfolding $^{-1}$

```
\mp@subsup{\pi}{1}{}:S(\mp@subsup{x}{1}{}\mp@subsup{x}{2}{})}\leftarrowB(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{}
\Pi5.1: B(aaxcb, cdd) \leftarrowC(x)
\Pi_.2: C(X)b\mp@subsup{x}{2}{})}\leftarrowA(\mp@subsup{\mathbf{x}}{1}{},\mp@subsup{\mathbf{x}}{2}{}
\pi
\Pi3.|: A(axc, d) \leftarrowD(x)
\Pi_.2: D(X)}\mp@subsup{\mathbf{x}}{1}{}b\mp@subsup{\mathbf{x}}{2}{})\leftarrowA(\mp@subsup{\mathbf{x}}{1}{},\mp@subsup{\mathbf{x}}{2}{}
\Pi4:A(\varepsilon, \varepsilon) \leftarrow
```

The m-degree of a rule is 0 if the arity of the head nonterminal is $<\mathrm{m}$; otherwise it's the number of m-ary nonterminals on the right-hand side. Do the converse of unfolding.
$\pi_{1}: S\left(\mathbf{x}_{1} \mathbf{x}_{2}\right) \leftarrow B\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
$\Pi_{5.1}: B(a a x c b, c d d) \leftarrow C(\mathbf{x})$
$\Pi_{5.2}: C\left(\mathbf{x}_{1} b \mathbf{x}_{2}\right) \leftarrow A\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
$\pi_{2}: B(a b, c d) \leftarrow$
$\Pi_{3.1}: A(a x c, d) \leftarrow D(\mathbf{x})$
$\Pi_{3.2}: D\left(\mathbf{x}_{1} b \mathbf{X}_{2}\right) \leftarrow A\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)$
$\Pi_{4}: A(\varepsilon, \varepsilon) \leftarrow$
\downarrow unfolding
$\Pi_{1} \circ \Pi_{5.1}: S(a a x c b c d d) \leftarrow C(\mathbf{x})$
$\pi_{1} \circ \pi_{2}: S(a b c d) \leftarrow$
$\Pi_{5.2} \circ \Pi_{3.1}: C(a \mathbf{x c b} \delta) \leftarrow D(\mathbf{x})$
$\Pi_{5.2} \circ \Pi_{4}: C(b) \leftarrow$
$\Pi_{3.2} \circ \Pi_{3.1}: D(a \mathbf{X c b d}) \leftarrow D(\mathbf{x})$
$\Pi_{3.2} \circ \Pi_{4}: D(b) \leftarrow$

Now each rule contains m-ary nonterminals only on one side of the rule, if any. Unfolding eliminates all m -ary nonterminals.

Program Transformation

$m-$ MCFG $_{w n}$ with no even m-pumps
\downarrow unfolding
no m-proper rules
\downarrow unfolding $^{-1}$
total m-degree $=0$
$\downarrow \quad$ unfolding
$(m-I)-$ MCFG $_{w n}$

Reduction of m-degrees

$$
\begin{gathered}
B\left(\mathbf{x}_{1} \mathbf{y}_{1} \mathbf{z}_{1}, \mathbf{z}_{2} \mathbf{y}_{2} a \mathbf{y}_{3} b, c \mathbf{x}_{2} d\right) \leftarrow \\
A\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), B\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}\right), C\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right) \\
\downarrow \text { unfolding }^{-1} \\
B\left(\mathbf{x}_{1} \mathbf{w}_{1}, \mathbf{w}_{2} b, c \mathbf{x}_{2} d\right) \leftarrow A\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), D\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right) \\
D\left(\mathbf{y}_{1} \mathbf{z}_{1}, \mathbf{z}_{2} \mathbf{y}_{2} a \mathbf{y}_{3}\right) \leftarrow B\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}\right), C\left(\mathbf{z}_{\mathbf{1}}, \mathbf{z}_{2}\right)
\end{gathered}
$$

The well-nestedness assumption is necessary in the second step. Here's a case of a well-nested rule.

Reduction of m-degrees

$$
\begin{array}{cc}
B\left(\mathbf{x}_{1} \mathbf{y}_{1} \mathbf{x}_{2}, \mathbf{z}_{1} \mathbf{y}_{2} a \mathbf{y}_{3} b, \mathbf{Z}_{2} d\right) & m=3 \\
A\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), B\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}\right), C\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right) & m=\text { unfolding }^{-1}
\end{array}
$$

If a rule is non-well-nested, the procedure does not work.

set of derivation trees of $G \in m-M_{C F G}{ }_{w n}$

without

even m-pump

with even m-pump

If the derivation tree contains an even m-pump, the string is $2 m$-pumpable. Otherwise, the string is in the language of some w.n. (m-1)-MCFG, and therefore is $2(m-1)-$ pumpable (disregarding finitely many exceptions). Proof by induction on m.

Pumping Lemma for $m-\mathrm{MCFL}_{w n}$

Theorem (Kanazawa 2009). $L \in m-M C F L_{w n} \Rightarrow L$ is $2 m$-iterative.

Reduction of m-degrees

$$
\begin{aligned}
& \Gamma \\
& m=2 \\
& B\left(\mathbf{x}_{1} \mathbf{y}_{1} \mathbf{x}_{2} \mathbf{y}_{2} b, \mathbf{z}_{1} c\right) \leftarrow \\
& A\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), B\left(\mathbf{y}_{1}, \mathbf{y}_{\mathbf{2}}\right), C\left(\mathbf{z}_{\mathbf{1}}\right) \\
& \downarrow \text { unfolding }{ }^{-1} \\
& B\left(w_{1} b, \mathbf{z}_{\mid} c\right) \leftarrow D\left(\mathbf{w}_{1}\right), C\left(\mathbf{z}_{\mathbf{1}}\right) \\
& D\left(\mathbf{x}_{1} \mathbf{y}_{1} \mathbf{x}_{2} \mathbf{y}_{\mathbf{2}}\right) \leftarrow A\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), B\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)
\end{aligned}
$$

For $m=2$, the procedure works even when the rule is non-well-nested.

Pumping Lemma for 2-MCFL

Theorem (Kanazawa 2009). $L \in 2-M C F L \Rightarrow L$ is 4-iterative.

The proof shows that a $2-\mathrm{MCFL}$ is 4 -iterative.

Counterexample in 3-MCFL

$H\left(\mathbf{x}_{2}\right) \leftarrow G\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)$
$G\left(a x_{1}, y_{1} c x_{2} \bar{c} d y_{2} \bar{d} x_{3}, y_{3} b\right) \leftarrow G\left(x_{1}, x_{2}, x_{3}\right), G\left(y_{1}, y_{2}, y_{3}\right)$
$G(a, \varepsilon, b) \leftarrow$

$$
a:=\varepsilon, b:=\varepsilon
$$

$\varphi: H \xrightarrow[\text { bijection }]{ } V$

$$
V \rightarrow \varepsilon \mid c V \bar{c} d V \bar{d} \quad V \subseteq D_{2}^{*}
$$

tree representation of $D_{2}{ }^{*}$

perfect binary tree

not pumpable

Lemma.

$w \in \operatorname{fac}\left(\left\{v_{n} \mid n \geq 0\right\}\right) \wedge w w \in \operatorname{fac}(H)$
 \downarrow

$\varphi(w) \in c^{*}\left|c V \bar{c} d c^{*}\right| \bar{d}^{*}\left|\bar{d}^{*} \bar{c} d V \bar{d}\right| V \bar{c} d c^{+} \mid \bar{d}^{+} \bar{c} d V$

$$
\begin{gathered}
v \in H \text { is said to be almost anti-iterative if } \\
v=u_{0} w_{1} u_{1} \ldots w_{k} u_{k} \wedge w_{1} \ldots w_{k} \neq \varepsilon \text { for any } k \geq 1 \\
\text { implies } \\
\text { there is at most one } i>1 \text { such that } \\
u_{0} w_{1} u_{1} \ldots w_{k}^{i} u_{k} \in H
\end{gathered}
$$

Theorem. For each $n \geq 0, v_{n}$ is almost anti-iterative.

$$
\begin{aligned}
v_{2} & =\underbrace{a a c}_{w_{1}} \underbrace{a c \bar{c} d \bar{d}}_{u_{1}} \underbrace{b \bar{c} d a c \bar{c} d \bar{d} b \bar{d} b}_{w_{2}} \underbrace{b}_{w_{3}} \\
w_{1}^{2} u_{1} w_{2}^{2} w_{3}^{2} & =\underbrace{a a c}_{v_{1}} \underbrace{a a c}_{v_{1}} \underbrace{a c \bar{c} d \bar{d} b}_{v_{1}} \bar{c} d \underbrace{a c \bar{c} d \bar{d} b}_{v_{1}} \bar{d} b b \bar{c} d \underbrace{\operatorname{acc} d \overline{d b} b}_{v_{1}} \overline{d b} b b \in H
\end{aligned}
$$

$$
w_{1}^{3} u_{1} w_{2}^{3} w_{3}^{3}=
$$

$$
\text { aac aac aac } \underbrace{a c \bar{c} d \bar{d} b}_{v_{1}} \bar{c} d \underbrace{\operatorname{ac} \bar{c} d \bar{d} b}_{v_{1}} \bar{d} b b \bar{c} d \underbrace{a c \bar{c} d \bar{d} b}_{v_{1}} \bar{d} b b \bar{c} d \underbrace{a c \bar{c} d \bar{d} b}_{v_{1}} \bar{d} b b b b \notin H
$$

Corollary. There is a 3-MCFL that is not k-iterative for any k.

Kanazawa, Kobele, Michaelis, Salvati, \& Yoshinaka 20Ix

MCFL vs. $\mathrm{MCFL}_{w n}$ vs. \mathbf{C}

$$
\begin{array}{r}
\left\{w_{1} \ldots w_{n} z_{n} w_{n} z_{n-1} \ldots z_{1} w_{1} z_{0} w_{1}^{R} \ldots w_{n}^{R} \mid\right. \\
\left.n \in \mathbb{N}, w_{i} \in\{c, d\}^{+}, z_{n} \ldots z_{0} \in D_{1}^{*}\right\}
\end{array}
$$

Since every language in C is k -iterative for some k , this language separates MCFL from C .

Limited Cross-Serial Dependencies

"MCSGs capture only certain kinds of dependencies, such as nested dependencies and certain limited kinds of crossing dependencies (for example, in subordinate clause constructions in Dutch or some variations of them, but perhaps not in the so-called MIX ... language ...)"

Joshi, Vijay-Shanker, and Weir I99I

$$
\text { MIX }=\left\{\left.w \in\{a, b, c\}^{*}| | w\right|_{a}=|w|_{b}=|w|_{c}\right\}
$$

The language MIX was supposed to be outside of the class of mildly context-sensitive languages.
"[No human language] has ... complete freedom for order." Bach 198I
"[MIX represents] an extremely case of the degree of free word order permitted in a language ... which is linguistically not relevant." Joshi I985
"... it seems rather unlikely that any natural language will turn out to have a MIX-like characteristic."

Gazdar 1985
"TAGs cannot generate this language, although for TAGs the proof is not in hand yet." Joshi I985
"I conjecture that this language is not indexed."

Marsh I986

"It is not known whether TAG ... can generate MIX.
This has turned out to be a very difficult problem."
Joshi et al. |99|

Some Facts about MIX

rational transduction

$$
L_{1} \geq L_{2} \Leftrightarrow \exists g h R\left(L_{2}=g\left(h^{-1}\left(L_{1}\right) \cap R\right)\right)
$$

g, h: homomorphisms
R: regular set

$$
L_{1} \equiv L_{2} \Leftrightarrow L_{1} \geq L_{2} \wedge L_{1} \leq L_{2}
$$

rationally equivalent
\mathcal{L} is a rational cone $\Leftrightarrow \mathcal{L}$ is closed under \geq

Some Facts about MIX

$M I X \equiv O_{2}$
$O_{2}=\left\{\left.w \in\{a, \bar{a}, b, \bar{b}\}^{*}| | \mathrm{w}\right|_{a}=|\mathrm{w}| \bar{a},|\mathrm{w}|_{b}=|\mathrm{w}| \bar{b}\right\}$

$$
\begin{gathered}
g\left(O_{2} \cap(a \cup b \cup \overline{a b})^{*}\right)=\mathrm{MIX} \\
g(a)=a \\
g(b)=b \\
g(\bar{a})=c \\
g(\bar{b})=\varepsilon
\end{gathered}
$$

$\mathrm{O}_{2} \geq \mathrm{MIX}$

$$
\begin{aligned}
h^{-1}\left(\operatorname { M I X } \cap \left(a^{2} \cup(a b)^{2}\right.\right. & \left.\left.\cup(b c)^{2} \cup c^{2}\right)^{*}\right)=O_{2} \\
h(a) & =a^{2} \\
h(\bar{a}) & =(b c)^{2} \\
h(b) & =(a b)^{2} \\
h(\bar{b}) & =c^{2}
\end{aligned}
$$

$\mathrm{MIX} \geq \mathrm{O}_{2}$

Combinatorial Group Theory

"... it does not ... seem to be known whether or not the word problem of $Z \times Z$ is indexed." Gilman 2005
O_{2}

Theorem (Salvati). $O_{2} \in 2-M C F L$

$$
\begin{gathered}
S(x y) \leftarrow \operatorname{Inv}(x, y) \\
\hline \operatorname{Inv}\left(x_{1} y_{1}, y_{2} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(x_{1} x_{2} y_{1}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(y_{1}, x_{1} x_{2} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(y_{1}, y_{2} x_{1} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\hline \operatorname{Inv}\left(\alpha x_{1} \bar{\alpha}, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(\alpha x_{1}, \bar{\alpha} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(\alpha x_{1}, x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(x_{1} \alpha, \bar{\alpha} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(x_{1} \alpha, x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(x_{1}, \alpha x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\hline \operatorname{Inv}\left(x_{1} y_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(x_{1}, y_{1} x_{2} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\hline \operatorname{Inv}(\epsilon, \epsilon) \leftarrow
\end{gathered}
$$

where $\alpha \in\{a ; b\}$
Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.

The words in O_{2} are precisely the words that are represented as closed curves: $\bar{b} \bar{a} \overline{b b} a b a \overline{b b} a b b a b b \bar{a} \bar{b} \bar{a} b b a a a b b b \bar{a} \overline{b b} \overline{a a a a} b b a \overline{b b b} \bar{a} \bar{b} a$

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two points A^{\prime} and D^{\prime} inside J such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points B and C pairwise distinct from A and D such that A, B, C, and D appear in that order on one of the arcs going from A to D and $\overrightarrow{A D}=\overrightarrow{B C}$.

two-sided Dyck language

$\mathrm{MIX} \equiv \mathrm{O}_{2}=\operatorname{Shuffle}\left(\widehat{D}_{1}{ }^{*}, \hat{D}_{1}{ }^{*}\right)$

Fact. Shuffle $\left(D_{1}{ }^{*}, D_{1}{ }^{*}\right) \notin 2-M C F L$

The one-sided analogue of O 2 (the set of curves within the first quadrant) is not a 2 -MCFL. This can be proved with the Pumping Lemma for 2-MCFL (Kanazawa 2009).

$$
\begin{array}{r}
\operatorname{MIX}_{k}=\left\{w \in\left\{a_{1}, \ldots, a_{k}\right\}^{*} \mid \Psi(w)=n \cdot(I, \ldots, I)\right\} \\
M I X=\operatorname{MIX}_{3}
\end{array}
$$

Fact. If \mathcal{L} is a rational cone and contains MIX_{k} for all k, then \mathcal{L} contains all commutative semilinear languages.

Fact.
 MIX $\notin 2-\mathrm{MCFL}(1)$ $M_{I X} \notin 2-\mathrm{MCFL}_{w n}$
 $\mathrm{MIX}_{k+1} \notin k-\mathrm{MCFL}(\mathrm{I})$ $M^{\prime} X_{k+2} \notin k-$ MCFL $_{w n}$

Appropriate refinements of the Pumping Lemma for MCFLwn give these facts.

Question. $\mathrm{MIX}_{4} \notin \mathrm{MCFL}$?

Question. $M I X \notin M C F L_{w n}$?

Currently have no idea how to prove these.

Theorem. $M I X \notin 2-M C F L_{w n}$.

Kanazawa \& Salvati 2012

Head Grammars

$$
\begin{aligned}
& A\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2} \boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right) \leftarrow B\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right), C\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right) \\
& A\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \boldsymbol{y}_{1} \boldsymbol{y}_{2}\right) \leftarrow B\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right), C\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right) \\
& A\left(\boldsymbol{x}_{1} \boldsymbol{y}_{1}, \boldsymbol{y}_{2} \boldsymbol{x}_{2}\right) \leftarrow B\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right), C\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right) \\
& A\left(w_{1}, w_{2}\right) \leftarrow
\end{aligned}
$$

$$
w_{1}, w_{2} \in \Sigma \cup\{\varepsilon\}
$$

normal form for $2-$ MCFG $_{w n}$

$$
\begin{aligned}
\psi_{1}(w) & =|w|_{a}-|w|_{c} \\
\psi_{2}(w) & =|w|_{b}-|w|_{c} \\
\psi(w) & =\left(\psi_{1}(w), \psi_{2}(w)\right)
\end{aligned}
$$

$w \in$ MIX iff $\quad \psi(w)=(0,0)$.

Lemma 2. Suppose that $G=(N, \Sigma, P, S)$ is a head grammar without useless nonterminals such that $L(G) \subseteq$ MIX. There exists a function $\Psi_{G}: N \rightarrow \mathbb{Z} \times$ \mathbb{Z} such that $\vdash_{G} A\left(u_{1}, u_{2}\right)$ implies $\psi\left(u_{1} u_{2}\right)=\Psi_{G}(A)$.

A decomposition of $w \in \Sigma^{*}$ is a finite binary tree satisfying the following conditions:

- the root is labeled by some $\left(w_{1}, w_{2}\right)$ such that $w=w_{1} w_{2}$,
- each internal node whose left and right children are labeled by $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$, respectively, is labeled by one of $\left(u_{1} u_{2} v_{1}, v_{2}\right),\left(u_{1}, u_{2} v_{1} v_{2}\right)$, ($u_{1} v_{1}, v_{2} u_{2}$).
- each leaf node is labeled by some $\left(s_{1}, s_{2}\right)$ such that $s_{1} s_{2} \in\{b, c\}^{*} \cup\{a, c\}^{*} \cup\{a, b\}^{*}$.

A decomposition is an n-decomposition if each node label $\left(u_{1}, u_{2}\right)$ satisfies $\psi\left(u_{1}, u_{2}\right) \in[-n, n] \times[-n, n]$.

Lemma 3. If $M I X=L(G)$ for some head grammar $G=(\Sigma, N, P, S)$, then there exists an n such that each $w \in$ MIX has an n-decomposition.

Lemma 4. If each $w \in$ MIX has an n decomposition, then each $w \in$ MIX has a 2decomposition.

Lemma.

$z=a^{5} b^{14} a^{19} c^{29} b^{15} a^{5}$ has no 2-decomposition.

$$
\xrightarrow{a} \quad b \uparrow / c
$$

