
Theorem (Kanazawa 2009).
L ∈ m-MCFLwn ⇒ L is 2m-iterative.

Pumping Lemma for m-MCFLwn

1

The proof of the Pumping Lemma for m-MCFLwn is more complex.

Pumping Lemma for PDA

|Q|2
q1

q1

q2

q2

stack
height

timev2v1 u3u1u0

• ¬(All but finitely many accepting computations
reach stack height |Q|2)

• { w | w has an accepting computation that
doesn’t reach stack height |Q|2 } is regular

2

The proof in each case is somewhat similar to the proof of the pumping lemma for CFLs
using PDA, rather than CFG.

set of accepting computations of
PDA M

stack height
excceds |Q|2

stack height
stays below |Q|2

accepts a regular set R accepts a 2-iterative set
may be infinite

3

B

B

(x1,…,xm)

(v1x1v2,…,v2m−1xmv2m)

“even m-pump”

w has a derivation tree with even m-pump
⇒ w is 2m-pumpable

w = u0 v1 u1 … v2m u2m

v1 … v2m ≠ ε
u0 v1n u1 … v2m

n u2m ∈ L(G) for all n ≥ 0

4

set of derivation trees of
G ∈ m-MCFGwn

with even m-pumpwithout
even m-pump

yields Lʹ ∈ (m−1)-MCFLwn yields a 2m-iterative set
may be infinite

5

If the derivation tree contains an even m-pump, the string is 2m-pumpable.
Otherwise, the string is in the language of some w.n. (m-1)-MCFG, and therefore is 2(m-1)-
pumpable (disregarding finitely many exceptions).
Proof by induction on m.

set of derivation trees
of G ∈ m-MCFGwn

with even m-pump
without
even m-pump

set of derivation trees
of Gʹ ∈ m-MCFGwn

projection

no even m-pump

MSO-definable subset

find an equivalent (m−1)-MCFGwn

6

m-proper rules

B(x1y1z1, z2y2a, y3bcx2d) ←
 A(x1, x2), B(y1, y2, y3), C(z1, z2)

m-proper on the second subgoal

m = 3

7

B

B

(x1,…,xm)

(v1x1v2,…,v2m−1xmv2m)

The “spine” of an even m-pump consists of m-proper rules

8

m-degree

B(x1y1x2, z1y2ay3b, cz2d) ←
 A(x1, x2), B(y1, y2, y3), C(z1, z2)

• m-degree of a rule is 0 if dimention of left-
hand side nonterminal < m

• otherwise m-degree = number of right-
hand side nonterminals of dimension m

m = 3

m-degree = 1

9

Program Transformation

m-MCFGwn with no even m-pumps

no m-proper rules

total m-degree = 0

(m−1)-MCFGwn

10

The proof of this claim is by successive transformations on the grammar.

π1: S(x1x2) ← B(x1, x2)
π2: B(ax1b, cx2d) ← A(x1, x2)
π3: A(ax1bx2c, d) ← A(x1, x2)
π4: A(ε, ε) ←

π1: S(x1x2) ← B(x1, x2)
π2 ◦ π3: B(aax1bx2cb, cdd) ← A(x1, x2)
π2 ◦ π4: B(ab, cd) ←
π3: A(ax1bx2c, d) ← A(x1, x2)
π4: A(ε, ε) ←

m-proper rule

unfolding

m = 2

11

A rule is m-proper if the head nonterminal is m-ary and there is an m-ary nonterminal on
the right-hand side, each of whose arguments appear in the corresponding argument of the
head nonterminal.
Unfold until there is no m-proper rule. This procedure terminates because the grammar does
not allow an even m-pump.

π1: S(x1x2) ← B(x1, x2)
π5: B(aax1bx2cb, cdd) ← A(x1, x2)
π6: B(ab, cd) ←
π3: A(ax1bx2c, d) ← A(x1, x2)
π4: A(ε, ε) ←

π1: S(x1x2) ← B(x1, x2)
π5.1: B(aaxcb, cdd) ← C(x)
π5.2: C(x1bx2) ← A(x1, x2)
π2: B(ab, cd) ←
π3.1: A(axc, d) ← D(x)
π3.2: D(x1bx2) ← A(x1, x2)
π4: A(ε, ε) ←

unfolding–1

m-degree = 1

m-degree = 1

π5 = π5.1 ◦ π5.2

π3 = π3.1 ◦ π3.2

12

The m-degree of a rule is 0 if the arity of the head nonterminal is < m; otherwise it’s the
number of m-ary nonterminals on the right-hand side.
Do the converse of unfolding.

π1: S(x1x2) ← B(x1, x2)
π5.1: B(aaxcb, cdd) ← C(x)
π5.2: C(x1bx2) ← A(x1, x2)
π2: B(ab, cd) ←
π3.1: A(axc, d) ← D(x)
π3.2: D(x1bx2) ← A(x1, x2)
π4: A(ε, ε) ←

π1 ◦ π5.1: S(aaxcbcdd) ← C(x)
π1 ◦ π2: S(abcd) ←
π5.2 ◦ π3.1: C(axcbd) ← D(x)
π5.2 ◦ π4: C(b) ←
π3.2 ◦ π3.1: D(axcbd) ← D(x)
π3.2 ◦ π4: D(b) ←

unfolding

13

Now each rule contains m-ary nonterminals only on one side of the rule, if any. Unfolding
eliminates all m-ary nonterminals.

Program Transformation

m-MCFGwn with no even m-pumps

no m-proper rules

total m-degree = 0

(m−1)-MCFGwn

unfolding

unfolding–1

unfolding

14

Reduction of m-degrees

B(x1y1z1, z2y2ay3b, cx2d) ←
 A(x1, x2), B(y1, y2, y3), C(z1, z2)

B(x1w1, w2b, cx2d) ← A(x1, x2), D(w1, w2)
D(y1z1, z2y2ay3) ← B(y1, y2, y3), C(z1, z2)

unfolding–1

m = 3

15

The well-nestedness assumption is necessary in the second step.
Here’s a case of a well-nested rule.

Reduction of m-degrees

B(x1y1x2, z1y2ay3b, cz2d) ←
 A(x1, x2), B(y1, y2, y3), C(z1, z2)

unfolding–1

m = 3

16

If a rule is non-well-nested, the procedure does not work.

set of derivation trees of
G ∈ m-MCFGwn

with even m-pumpwithout
even m-pump

yields Lʹ ∈ (m−1)-MCFLwn yields a 2m-iterative set
may be infinite

17

If the derivation tree contains an even m-pump, the string is 2m-pumpable.
Otherwise, the string is in the language of some w.n. (m-1)-MCFG, and therefore is 2(m-1)-
pumpable (disregarding finitely many exceptions).
Proof by induction on m.

Theorem (Kanazawa 2009).
L ∈ m-MCFLwn ⇒ L is 2m-iterative.

Pumping Lemma for m-MCFLwn

18

The proof of the Pumping Lemma for m-MCFLwn is more complex.

Reduction of m-degrees

B(x1y1x2y2b, z1c) ←
 A(x1, x2), B(y1, y2), C(z1)

unfolding–1

m = 2

B(w1b, z1c) ← D(w1), C(z1)
D(x1y1x2y2) ← A(x1, x2), B(y1, y2)

19

For m = 2, the procedure works even when the rule is non-well-nested.

Theorem (Kanazawa 2009).
L ∈ 2-MCFL ⇒ L is 4-iterative.

Pumping Lemma for 2-MCFL

20

The Pumping Lemma holds for 2-MCFL.

MCFL = m-MCFL

m≥1


0

1

2

m–1

CFL

TAL1

2
3

m

CFL

TAL

yCFT

sp
= yCFT

sp
(m −1)

m≥1


1

2

3

k

CFL

TAL

C = C

k
k≥1


MCFL

wn
= m-MCFL

wn
m≥1


2m-iterative 2k-iterative4-iterative

21

The proof shows that a 2-MCFL is 4-iterative.

H(x2) ← G(x1, x2, x3)
G(ax1, y1cx2c̄dy2d ̄x3, y3b) ← G(x1, x2, x3), G(y1, y2, y3)
G(a, ε, b) ←

Counterexample in 3-MCFL

 V → ε | c V c̄ d V d ̄ V ⊆ D2*

φ: H V
a := ε, b := ε

bijection

22

Pumping fails for m-MCFLs for (m > 2).
Here’s an example of a 3-MCFL that is not k-iterative for any k.

c

c d

T1 T2

d

d

c d

T3 T4

c

n m

am+1 c φ–1(T1 T2) c̄ d φ–1(T3 T4) d ̄ bn+1

φ–1

tree representation of D2*

23

vn+1 = an+1c vn c̄ d vn d ̄ bn+1

c

c d

Ln Rn

d

d

c d

Ln Rn

c

n n

φ–1

perfect binary tree

v0 = ε

L1 = c, R1 = d

not pumpable
24

w ∈ fac({ vn | n ≥ 0 }) ∧ ww ∈ fac(H)

φ(w) ∈ c* | cV c̄dc* | d ̄* | d̄*c̄dV d ̄ | Vc̄dc+ | d̄+c̄dV

Lemma.

25

v ∈ H is said to be almost anti-iterative if
v = u0 w1 u1 … wk uk ∧ w1 … wk ≠ ε for any k ≥ 1

implies
there is at most one i > 1 such that

u0 w1i u1 … wk
i uk ∈ H

Theorem. For each n ≥ 0, vn is almost anti-iterative.

26

Case 3.3. m = 0, n ≥ 1. This case is exactly symmetric to the preceding
case, and we can conclude

ψ(w) ∈ V c̄dc
+
.

This concludes the proof of the lemma.

Given a language K and a string w ∈ K, an iteration tuple for w in K

is a tuple of strings (u0, w1, u1, . . . , wk, uk) such that
This
definition
makes an
iteration
tuple a gen-
eralization
of what
Berstel
called an
“iterative
pair”.

• w = u0w1u1 . . . wkuk,

• w1 . . . wk �= ε, and

• u0w
i
1u1 . . . w

i
kuk ∈ K for all i ≥ 0.

A language K is said to be k-iterative if all but finitely many strings in K

have an iteration tuple (u0, v1, u1, . . . , vk, uk) (with 2k+1 components) in K.
We simply say that K is iterative if all but finitely many strings in K have

The
definition of
k-iterative
is from
Greibach.

an iteration tuple in K (with any odd number of components). (Iterativity
is a slight weakening of the property Groenink called finite pumpability.)

We prove a theorem that implies that H is not iterative. In fact, the
theorem states something much stronger. We say that a string v ∈ K

is absolutely anti-iterative in K if v = u0w1u1 . . . wkuk and w0 . . . wk �= ε
for any k ≥ 1 imply u0w

i
1u1 . . . w

i
kuk �∈ K for all i > 1. We say that

v ∈ K is almost absolutely anti-iterative in K if v = u0w1u1 . . . wkuk and
w0 . . . wk �= ε for any k ≥ 1 imply that there is at most i > 1 such that
u0w

i
1u1 . . . w

i
kuk ∈ K.

Theorem 15. For each n ≥ 0, the string vn is almost absolutely anti-
iterative in K.

Before embarking on the proof of the theorem, let us consider a simple
example:

v2 = aac����
w1

acc̄dd̄� �� �
u1

bc̄dacc̄dd̄bd̄b� �� �
w2

b����
w3

.

In this example, u0 = u2 = u3 = ε. Note

ψ(w1) = c, ψ(w2) ∈ c̄R, ψ(w3) = ε.

We have

w
2
1u1w

2
2w

2
3 = aac aac acc̄dd̄ b� �� �

v1

c̄d acc̄dd̄b� �� �
v1

d̄b b

� �� �
v2

c̄d acc̄dd̄b� �� �
v1

d̄b b b ∈ H,

but

9

w
3
1u1w

3
2w

3
3 =

aac aac aac acc̄dd̄ b� �� �
v1

c̄d acc̄dd̄b� �� �
v1

d̄b b

� �� �
v2

c̄d acc̄dd̄b� �� �
v1

d̄b b

� �� �
�∈H

c̄d acc̄dd̄b� �� �
v1

d̄b b b b �∈ H

After the occurrence of d̄ following the third occurrence of v1, one should

find b
3
, rather than b

2
, in order to have a string in H.

Proof of Theorem 15. Suppose that vn = u0w1u1 . . . wkuk and w1 . . . wk �=
ε. If there is some j such that w

3
j
is not in fac(H), then there is no i ≥ 3

such that u0w
i

1u1 . . . w
i

k
uk ∈ H, and the conclusion of the theorem is clearly

satisfied. Hence we may assume that each w
3
j
belongs to fac(H).

Suppose that u0w
h

1 . . . w
h

k
uk ∈ H for some h > 1. We show that such h

is unique.

Since w
2
j
is a factor of w

3
j
and hence belongs to fac(H), each ψ(wj) must

belong to one of the six sets

c
∗
, Ldc

∗
, d̄

∗
, d̄

∗
c̄R, V c̄dc

+
, d̄

+
c̄dV.

By Lemma 11, it cannot be that ψ(wj) = ε for all j. Since every string in

H has the same number of occurrences of c, c̄, d, d̄, it must be that there is

a j such that ψ(wj) ∈ Ldc
∗ | d̄∗c̄R | V c̄dc

+ | d̄+c̄dV .

Case 1. ψ(wj) ∈ Ldc
∗
. Then we must have

wj ∈ a
m1cvlc̄d(a

∗
c)

p
a
m2 ,

ujwj+1uj+1 . . . wkuk ∈ (a
∗
c)

l−p
(c̄ | d̄)�Σ∗

,

for some l,m1,m2, p ≥ 0 such that p ≤ l and m1 ≤ l + 1. It is easy to see

that there must be some q ≥ 0 such that for every i ≥ 1,

ujw
i

j+1uj+1 . . . w
i

k
uk ∈ (a

∗
c)

l−p+(i−1)q
(c̄ | d̄)�Σ∗

.

Thus, w
h

j
ujw

h

j+1uj+1 . . . w
h

k
uk has a factor in

m2 +m1

corrected to
m2d(a

∗
c)

p
a
m2+m1cvlc̄d(a

∗
c)

p
a
m2(a

∗
c)

l−p+(h−1)q
(c̄ | d̄).

By Lemma 10, this implies

m2 +m1 = p+ l − p+ (h− 1)q + 1

= (h− 1)q + l + 1.
(14)

Note that the string w
3
j
has a factor in

d(a
∗
c)

p
a
m2+m1cvlc̄d(a

∗
c)

p
a
m2+m1cvlc̄.

10

Case 3.3. m = 0, n ≥ 1. This case is exactly symmetric to the preceding
case, and we can conclude

ψ(w) ∈ V c̄dc
+
.

This concludes the proof of the lemma.

Given a language K and a string w ∈ K, an iteration tuple for w in K

is a tuple of strings (u0, w1, u1, . . . , wk, uk) such that
This
definition
makes an
iteration
tuple a gen-
eralization
of what
Berstel
called an
“iterative
pair”.

• w = u0w1u1 . . . wkuk,

• w1 . . . wk �= ε, and

• u0w
i
1u1 . . . w

i
kuk ∈ K for all i ≥ 0.

A language K is said to be k-iterative if all but finitely many strings in K

have an iteration tuple (u0, v1, u1, . . . , vk, uk) (with 2k+1 components) in K.
We simply say that K is iterative if all but finitely many strings in K have

The
definition of
k-iterative
is from
Greibach.

an iteration tuple in K (with any odd number of components). (Iterativity
is a slight weakening of the property Groenink called finite pumpability.)

We prove a theorem that implies that H is not iterative. In fact, the
theorem states something much stronger. We say that a string v ∈ K

is absolutely anti-iterative in K if v = u0w1u1 . . . wkuk and w0 . . . wk �= ε
for any k ≥ 1 imply u0w

i
1u1 . . . w

i
kuk �∈ K for all i > 1. We say that

v ∈ K is almost absolutely anti-iterative in K if v = u0w1u1 . . . wkuk and
w0 . . . wk �= ε for any k ≥ 1 imply that there is at most i > 1 such that
u0w

i
1u1 . . . w

i
kuk ∈ K.

Theorem 15. For each n ≥ 0, the string vn is almost absolutely anti-
iterative in K.

Before embarking on the proof of the theorem, let us consider a simple
example:

v2 = aac����
w1

acc̄dd̄� �� �
u1

bc̄dacc̄dd̄bd̄b� �� �
w2

b����
w3

.

In this example, u0 = u2 = u3 = ε. Note

ψ(w1) = c, ψ(w2) ∈ c̄R, ψ(w3) = ε.

We have

w
2
1u1w

2
2w

2
3 = aac aac acc̄dd̄ b� �� �

v1

c̄d acc̄dd̄b� �� �
v1

d̄b b

� �� �
v2

c̄d acc̄dd̄b� �� �
v1

d̄b b b ∈ H,

but

9

27

Corollary. There is a 3-MCFL that is not k-iterative
for any k.

Kanazawa, Kobele, Michaelis, Salvati, & Yoshinaka 201x

28

MCFL vs. MCFLwn vs. C

 MIX?

{ w
1
…w

n
z

n
w

n
z

n−1…z
1
w

1
z

0
w

1
R …w

n
R∣

n ∈,w
i
∈{c,d}+ , z

n
…z

0
∈D∗

1
}

Staudacher 1993
Michaelis 2005

 { a
1
n…an

2m
∣n ≥ 0 }

{ wm+1 | w ∈ {a, b}* }

RESPm

 { w#w#w∣ w ∈D∗
1
}

Engelfriet and Skyum 1976

 { w#w∣ w ∈D∗
1
}

2-MCFL
Kanazawa and Salvati 2010

H

29

Since every language in C is k-iterative for some k, this language separates MCFL from C.

“MCSGs capture only certain kinds of
dependencies, such as nested dependencies and
certain limited kinds of crossing dependencies (for
example, in subordinate clause constructions in
Dutch or some variations of them, but perhaps not
in the so-called MIX … language …)”

Joshi, Vijay-Shanker, and Weir 1991

MIX = { w ∈ {a,b,c}* | |w|a = |w|b = |w|c }

Limited Cross-Serial
Dependencies

30

The language MIX was supposed to be outside of the class of mildly context-sensitive
languages.

“[No human language] has … complete freedom for
order.” Bach 1981

“[MIX represents] an extremely case of the degree
of free word order permitted in a language … which
is linguistically not relevant.” Joshi 1985

“… it seems rather unlikely that any natural
language will turn out to have a MIX-like
characteristic.” Gazdar 1985

31

“TAGs cannot generate this language, although for
TAGs the proof is not in hand yet.” Joshi 1985

“I conjecture that this language is not indexed.”
 Marsh 1986

“It is not known whether TAG … can generate MIX.
This has turned out to be a very difficult problem.”
 Joshi et al. 1991

32

Some Facts about MIX

L1 ≥ L2 ⇔ ∃g h R (L2 = g(h–1(L1) ∩ R))

g, h: homomorphisms
R: regular set

L1 ≡ L2 ⇔ L1 ≥ L2 ∧ L1 ≤ L2

rational transduction

rationally equivalent

L is a rational cone ⇔ L is closed under ≥

33

Some Facts about MIX
MIX ≡ O2

O2 = { w ∈ {a, a ̄, b, b ̄}* | |w|a = |w|a ̄, |w|b = |w|b ̄ }

g(O2 ∩ (a ∪ b ∪ a ̄b ̄)*) = MIX
g(a) = a
g(b) = b
g(a ̄) = c
g(b ̄) = ε O2 ≥ MIX

34

h–1(MIX ∩ (a2 ∪ (ab)2 ∪ (bc)2 ∪ c2)*) = O2

h(a) = a2

 h(a ̄) = (bc)2

 h(b) = (ab)2

h(b ̄) = c2

MIX ≥ O2

35

“… it does not … seem to be known whether or not
the word problem of Z × Z is indexed.” Gilman 2005

O2

Combinatorial Group
Theory

36

Theorem (Salvati). O2 ∈ 2-MCFL

MIX

A grammar for O2

A 2-MCFG for O2

S(xy)← Inv(x , y)
Inv(x1y1, y2x2)← Inv(x1, x2), Inv(y1, y2)
Inv(x1x2y1, y2)← Inv(x1, x2), Inv(y1, y2)
Inv(y1, x1x2y2)← Inv(x1, x2), Inv(y1, y2)
Inv(y1x1x2, y2)← Inv(x1, x2), Inv(y1, y2)
Inv(y1, y2x1x2)← Inv(x1, x2), Inv(y1, y2)
Inv(αx1α, x2)← Inv(x1, x2)
Inv(αx1,αx2)← Inv(x1, x2)
Inv(αx1, x2α)← Inv(x1, x2)
Inv(x1α,αx2)← Inv(x1, x2)
Inv(x1α, x2α)← Inv(x1, x2)
Inv(x1,αx2α)← Inv(x1, x2)

Inv(x1y1x2, y2)← Inv(x1, x2), Inv(y1, y2)
Inv(x1, y1x2y2)← Inv(x1, x2), Inv(y1, y2)

Inv(�, �)←

where α ∈ {a; b}
Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

37

MIX

A grammar for O2

A graphical interpretation of O2.
Graphical interpretation of the word aaabaabaabbbbbaabbabbbbaaaabbbbbbbbaaa:

The words in O2 are precisely the words that are represented as closed curves:
babbababbabbabbababbaaabbbabbaaaabbabbbaba

a a ̄

b b ̄

38

MIX

A Theorem on Jordan curves

A theorem on Jordan curves
Theorem: If A and D are two points on a Jordan curve J such that there are two

points A� and D� inside J such that
−→
AD =

−−→
A�D�, then there are two points B and C

pairwise distinct from A and D such that A, B, C , and D appear in that order on one

of the arcs going from A to D and
−→
AD =

−→
BC .

A D

B C

EF

A
�

D
�

G H

39

MIX ≣ O2 = Shuffle(D1*, D1*)＾ ＾

Fact. Shuffle(D1*, D1*) ∉ 2-MCFL

two-sided Dyck language

40

The one-sided analogue of O2 (the set of curves within the first quadrant) is not a 2-MCFL.
This can be proved with the Pumping Lemma for 2-MCFL (Kanazawa 2009).

MIXk = { w ∈ { a1,…,ak }* | ψ(w) = n·(1,…,1) }

Fact. If L is a rational cone and contains MIXk for all
k, then L contains all commutative semilinear languages.

MIX = MIX3

41

Generalization of MIX.

Fact.

MIX ∉ 2-MCFL(1)
MIX4 ∉ 2-MCFLwn

MIXk+1 ∉ k-MCFL(1)
MIXk+2 ∉ k-MCFLwn

42

Appropriate refinements of the Pumping Lemma for MCFLwn give these facts.

Question. MIX4 ∉ MCFL ?

Question. MIX ∉ MCFLwn ?

43

Currently have no idea how to prove these.

Theorem. MIX ∉ 2-MCFLwn.

Kanazawa & Salvati 2012

44

Head Grammars

indexed language.3 (It is known that the indexed
languages properly include the tree-adjoining lan-
guages.) Joshi et al. (1991), however, expressed a
more pessimistic view about the conjecture:

“It is not known whether TAG . . . can
generate MIX. This has turned out to be
a very difficult problem. In fact, it is
not even known whether an IG [(indexed
grammar)] can generate MIX.”

This open question has become all the more press-
ing after a recent result by Salvati (2011). This re-
sult says that MIX is in the class of multiple context-

free languages (Seki et al., 1991), or equivalently,
languages of linear context-free rewriting systems

(Vijay-Shanker et al., 1987; Weir, 1988), which has
been customarily regarded as a formal counterpart
of the informal notion of a mildly context-sensitive
language.4 It means that either we have to aban-
don the identification of multiple context-free lan-
guages with mildly context-sensitive languages, or
we should revise our conception of limited cross-
serial dependencies and stop regarding MIX-like
languages as violations of this condition. Surely, the
resolution of Joshi’s (1985) conjecture should cru-
cially affect the choice between these two alterna-
tives.

In this paper, we prove that MIX is not a tree-
adjoining language. Our proof is cast in terms of the
formalism of head grammar (Pollard, 1984; Roach,
1987), which is known to be equivalent to TAG
(Vijay-Shanker and Weir, 1994). The key to our
proof is the notion of an n-decomposition of a string
over {a, b, c}, which is similar to the notion of a
derivation in head grammars, but independent of any
particular grammar. The parameter n indicates how
unbalanced the occurrence counts of the three let-
ters can be at any point in a decomposition. We first

3The relation of MIX with indexed languages is also of in-
terest in combinatorial group theory. Gilman (2005) remarks
that “it does not . . . seem to be known whether or not the
word problem of Z × Z is indexed”, alluding to the language
O2 = {w ∈ {a, ā, b, b̄}∗ | |w|a = |w|ā, |w|b = |w|b̄ }. Since O2 and
MIX are rationally equivalent, O2 is indexed if and only if MIX
is indexed (Salvati, 2011).

4Joshi et al. (1991) presented linear context-free rewriting
systems as mildly context-sensitive grammars. Groenink (1997)
wrote “The class of mildly context-sensitive languages seems to
be most adequately approached by LCFRS.”

show that if MIX is generated by some head gram-
mar, then there is an n such that every string in MIX
has an n-decomposition. We then prove that if every
string in MIX has an n-decomposition, then every
string in MIX must have a 2-decomposition. Finally,
we exhibit a particular string in MIX that has no 2-
decomposition. The length of this string is 87, and
the fact that it has no 2-decomposition was first ver-
ified by a computer program accompanying this pa-
per. We include here a rigorous, mathematical proof
of this fact not relying on the computer verification.

2 Head Grammars

A head grammar is a quadruple G = (N,Σ, P, S),
where N is finite set of nonterminals, Σ is a finite set
of terminal symbols (alphabet), S is a distinguished
element of N, and P is a finite set of rules. Each non-
terminal symbol is interpreted as a binary predicate
on strings in Σ∗. There are four types of rules:

A(x1x2y1, y2)← B(x1, x2),C(y1, y2)
A(x1, x2y1y2)← B(x1, x2),C(y1, y2)
A(x1y1, y2x2)← B(x1, x2),C(y1, y2)
A(w1,w2)←

Here, A, B,C ∈ N, x1, x2, y1, y2 are variables, and
w1,w2 ∈ Σ ∪ {ε}.5 Rules of the first three types are
binary rules and rules of the last type are terminat-

ing rules. This definition of a head grammar actu-
ally corresponds to a normal form for head gram-
mars that appears in section 3.3 of Vijay-Shanker
and Weir’s (1994) paper.6

The rules of head grammars are interpreted as im-
plications from right to left, where variables can be
instantiated to any terminal strings. Each binary rule

5We use ε to denote the empty string.
6This normal form is also mentioned in chapter 5, section 4

of Kracht’s (2003) book. The notation we use to express rules
of head grammars is borrowed from elementary formal sys-

tems (Smullyan, 1961; Arikawa et al., 1992), also known as
literal movement grammars (Groenink, 1997; Kracht, 2003),
which are logic programs over strings. In Vijay-Shanker and
Weir’s (1994) notation, the four rules are expressed as follows:

A→ C2,2(B,C)
A→ C1,2(B,C)
A→ W(B,C)
A→ C1,1(w1 ↑ w2)

indexed language.3 (It is known that the indexed
languages properly include the tree-adjoining lan-
guages.) Joshi et al. (1991), however, expressed a
more pessimistic view about the conjecture:

“It is not known whether TAG . . . can
generate MIX. This has turned out to be
a very difficult problem. In fact, it is
not even known whether an IG [(indexed
grammar)] can generate MIX.”

This open question has become all the more press-
ing after a recent result by Salvati (2011). This re-
sult says that MIX is in the class of multiple context-

free languages (Seki et al., 1991), or equivalently,
languages of linear context-free rewriting systems

(Vijay-Shanker et al., 1987; Weir, 1988), which has
been customarily regarded as a formal counterpart
of the informal notion of a mildly context-sensitive
language.4 It means that either we have to aban-
don the identification of multiple context-free lan-
guages with mildly context-sensitive languages, or
we should revise our conception of limited cross-
serial dependencies and stop regarding MIX-like
languages as violations of this condition. Surely, the
resolution of Joshi’s (1985) conjecture should cru-
cially affect the choice between these two alterna-
tives.

In this paper, we prove that MIX is not a tree-
adjoining language. Our proof is cast in terms of the
formalism of head grammar (Pollard, 1984; Roach,
1987), which is known to be equivalent to TAG
(Vijay-Shanker and Weir, 1994). The key to our
proof is the notion of an n-decomposition of a string
over {a, b, c}, which is similar to the notion of a
derivation in head grammars, but independent of any
particular grammar. The parameter n indicates how
unbalanced the occurrence counts of the three let-
ters can be at any point in a decomposition. We first

3The relation of MIX with indexed languages is also of in-
terest in combinatorial group theory. Gilman (2005) remarks
that “it does not . . . seem to be known whether or not the
word problem of Z × Z is indexed”, alluding to the language
O2 = {w ∈ {a, ā, b, b̄}∗ | |w|a = |w|ā, |w|b = |w|b̄ }. Since O2 and
MIX are rationally equivalent, O2 is indexed if and only if MIX
is indexed (Salvati, 2011).

4Joshi et al. (1991) presented linear context-free rewriting
systems as mildly context-sensitive grammars. Groenink (1997)
wrote “The class of mildly context-sensitive languages seems to
be most adequately approached by LCFRS.”

show that if MIX is generated by some head gram-
mar, then there is an n such that every string in MIX
has an n-decomposition. We then prove that if every
string in MIX has an n-decomposition, then every
string in MIX must have a 2-decomposition. Finally,
we exhibit a particular string in MIX that has no 2-
decomposition. The length of this string is 87, and
the fact that it has no 2-decomposition was first ver-
ified by a computer program accompanying this pa-
per. We include here a rigorous, mathematical proof
of this fact not relying on the computer verification.

2 Head Grammars

A head grammar is a quadruple G = (N,Σ, P, S),
where N is finite set of nonterminals, Σ is a finite set
of terminal symbols (alphabet), S is a distinguished
element of N, and P is a finite set of rules. Each non-
terminal symbol is interpreted as a binary predicate
on strings in Σ∗. There are four types of rules:

A(x1x2y1, y2)← B(x1, x2),C(y1, y2)
A(x1, x2y1y2)← B(x1, x2),C(y1, y2)
A(x1y1, y2x2)← B(x1, x2),C(y1, y2)
A(w1,w2)←

Here, A, B,C ∈ N, x1, x2, y1, y2 are variables, and
w1,w2 ∈ Σ ∪ {ε}.5 Rules of the first three types are
binary rules and rules of the last type are terminat-

ing rules. This definition of a head grammar actu-
ally corresponds to a normal form for head gram-
mars that appears in section 3.3 of Vijay-Shanker
and Weir’s (1994) paper.6

The rules of head grammars are interpreted as im-
plications from right to left, where variables can be
instantiated to any terminal strings. Each binary rule

5We use ε to denote the empty string.
6This normal form is also mentioned in chapter 5, section 4

of Kracht’s (2003) book. The notation we use to express rules
of head grammars is borrowed from elementary formal sys-

tems (Smullyan, 1961; Arikawa et al., 1992), also known as
literal movement grammars (Groenink, 1997; Kracht, 2003),
which are logic programs over strings. In Vijay-Shanker and
Weir’s (1994) notation, the four rules are expressed as follows:

A→ C2,2(B,C)
A→ C1,2(B,C)
A→ W(B,C)
A→ C1,1(w1 ↑ w2)

normal form for 2-MCFGwn

left concatenation

right concatenation

wrapping

45

(c) w1 = z0v1z1, w2 = z2v2z3, and �G A(u1, u2)

implies �G B(z0u1z1, z2u2z3).

We omit the details. �

We call a nonterminal A of a head grammar G use-
less if A does not appear in any derivation trees for

strings in L(G). Clearly, useless nonterminals can be

eliminated from any head grammar without affecting

the language of the grammar.

3 Decompositions of Strings in MIX

Henceforth, Σ = {a, b, c}. Let Z denote the set of in-

tegers. Define functions ψ1,ψ2 : Σ∗ → Z, ψ : Σ∗ →
Z × Z by

ψ1(w) = |w|a − |w|c,
ψ2(w) = |w|b − |w|c,
ψ(w) = (ψ1(w),ψ2(w)).

Clearly, we have ψ(a) = (1, 0),ψ(b) = (0, 1),ψ(c) =

(−1,−1), and

w ∈ MIX iff ψ(w) = (0, 0).

Note that for all strings w1,w2 ∈ Σ∗, ψ(w1w2) =

ψ(w1)+ψ(w2). In other words, ψ is a homomorphism

from the free monoid Σ∗ to Z × Z with addition as

the monoid operation and (0, 0) as identity.

Lemma 2. Suppose that G = (N,Σ, P, S) is a head
grammar without useless nonterminals such that
L(G) ⊆ MIX. There exists a function ΨG : N → Z ×
Z such that �G A(u1, u2) implies ψ(u1u2) = ΨG(A).

Proof. Since G has no useless nonterminals, for

each nonterminal A of G, there is a derivation tree

for some string in L(G) in which A appears in a node

label. By Lemma 1, there are strings z0, z1, z2 such

that �G A(u1, u2) implies z0u1z1u2z2 ∈ L(G). Since

L(G) ⊆ MIX, we have ψ(z0u1z1u2z2) = (0, 0), and

hence

ψ(u1u2) = −ψ(z0z1z2). �

A decomposition of w ∈ Σ∗ is a finite binary tree

satisfying the following conditions:

• the root is labeled by some (w1,w2) such that

w = w1w2,

• each internal node whose left and right children

are labeled by (u1, u2) and (v1, v2), respectively,

is labeled by one of (u1u2v1, v2), (u1, u2v1v2),

(u1v1, v2u2).

• each leaf node is labeled by some (s1, s2) such

that s1s2 ∈ {b, c}∗ ∪ {a, c}∗ ∪ {a, b}∗.

Thus, the label of an internal node in a decomposi-

tion is obtained from the labels of its children by left

concatenation, right concatenation, or wrapping. It

is easy to see that if G is a head grammar over the al-

phabet Σ, any derivation for w ∈ L(G) induces a de-

composition of w. (Just strip off nonterminals.) Note

that unlike with derivation trees, we have placed no

bound on the length of a string that may appear on

a leaf node of a decomposition. This will be conve-

nient in some of the proofs below.

When p and q are integers, we write [p, q] for the

set { r ∈ Z | p ≤ r ≤ q }. We call a decomposition of

w an n-decomposition if each of its nodes is labeled

by some (v1, v2) such that ψ(v1v2) ∈ [−n, n]×[−n, n].

Lemma 3. If MIX = L(G) for some head grammar
G = (Σ,N, P, S), then there exists an n such that each
w ∈ MIX has an n-decomposition.

Proof. We may suppose without loss of generality

that G has no useless nonterminal. Since MIX =

L(G), there is a function ΨG satisfying the condition

of Lemma 2. Since the set N of nonterminals of G
is finite, there is an n such that ΨG(A) ∈ [−n, n] ×
[−n, n] for all A ∈ N. Then it is clear that a derivation

tree for w ∈ L(G) induces an n-decomposition of

w. �

If w = d1 . . . dm ∈ Σm
, then for 0 ≤ i ≤ j ≤ m,

we write w[i, j] to refer to the substring di+1 . . . d j
of w. (As a special case, we have w[i, i] = ε.) The

following is a key lemma in our proof:

Lemma 4. If each w ∈ MIX has an n-
decomposition, then each w ∈ MIX has a 2-
decomposition.

Proof. Assume that each w ∈ MIX has an n-

decomposition. Define a homomorphism γn : Σ∗ →
Σ∗ by

γn(a) = an,

γn(b) = bn,

γn(c) = cn.

(c) w1 = z0v1z1, w2 = z2v2z3, and �G A(u1, u2)

implies �G B(z0u1z1, z2u2z3).

We omit the details. �

We call a nonterminal A of a head grammar G use-
less if A does not appear in any derivation trees for

strings in L(G). Clearly, useless nonterminals can be

eliminated from any head grammar without affecting

the language of the grammar.

3 Decompositions of Strings in MIX

Henceforth, Σ = {a, b, c}. Let Z denote the set of in-

tegers. Define functions ψ1,ψ2 : Σ∗ → Z, ψ : Σ∗ →
Z × Z by

ψ1(w) = |w|a − |w|c,
ψ2(w) = |w|b − |w|c,
ψ(w) = (ψ1(w),ψ2(w)).

Clearly, we have ψ(a) = (1, 0),ψ(b) = (0, 1),ψ(c) =

(−1,−1), and

w ∈ MIX iff ψ(w) = (0, 0).

Note that for all strings w1,w2 ∈ Σ∗, ψ(w1w2) =

ψ(w1)+ψ(w2). In other words, ψ is a homomorphism

from the free monoid Σ∗ to Z × Z with addition as

the monoid operation and (0, 0) as identity.

Lemma 2. Suppose that G = (N,Σ, P, S) is a head
grammar without useless nonterminals such that
L(G) ⊆ MIX. There exists a function ΨG : N → Z ×
Z such that �G A(u1, u2) implies ψ(u1u2) = ΨG(A).

Proof. Since G has no useless nonterminals, for

each nonterminal A of G, there is a derivation tree

for some string in L(G) in which A appears in a node

label. By Lemma 1, there are strings z0, z1, z2 such

that �G A(u1, u2) implies z0u1z1u2z2 ∈ L(G). Since

L(G) ⊆ MIX, we have ψ(z0u1z1u2z2) = (0, 0), and

hence

ψ(u1u2) = −ψ(z0z1z2). �

A decomposition of w ∈ Σ∗ is a finite binary tree

satisfying the following conditions:

• the root is labeled by some (w1,w2) such that

w = w1w2,

• each internal node whose left and right children

are labeled by (u1, u2) and (v1, v2), respectively,

is labeled by one of (u1u2v1, v2), (u1, u2v1v2),

(u1v1, v2u2).

• each leaf node is labeled by some (s1, s2) such

that s1s2 ∈ {b, c}∗ ∪ {a, c}∗ ∪ {a, b}∗.

Thus, the label of an internal node in a decomposi-

tion is obtained from the labels of its children by left

concatenation, right concatenation, or wrapping. It

is easy to see that if G is a head grammar over the al-

phabet Σ, any derivation for w ∈ L(G) induces a de-

composition of w. (Just strip off nonterminals.) Note

that unlike with derivation trees, we have placed no

bound on the length of a string that may appear on

a leaf node of a decomposition. This will be conve-

nient in some of the proofs below.

When p and q are integers, we write [p, q] for the

set { r ∈ Z | p ≤ r ≤ q }. We call a decomposition of

w an n-decomposition if each of its nodes is labeled

by some (v1, v2) such that ψ(v1v2) ∈ [−n, n]×[−n, n].

Lemma 3. If MIX = L(G) for some head grammar
G = (Σ,N, P, S), then there exists an n such that each
w ∈ MIX has an n-decomposition.

Proof. We may suppose without loss of generality

that G has no useless nonterminal. Since MIX =

L(G), there is a function ΨG satisfying the condition

of Lemma 2. Since the set N of nonterminals of G
is finite, there is an n such that ΨG(A) ∈ [−n, n] ×
[−n, n] for all A ∈ N. Then it is clear that a derivation

tree for w ∈ L(G) induces an n-decomposition of

w. �

If w = d1 . . . dm ∈ Σm
, then for 0 ≤ i ≤ j ≤ m,

we write w[i, j] to refer to the substring di+1 . . . d j
of w. (As a special case, we have w[i, i] = ε.) The

following is a key lemma in our proof:

Lemma 4. If each w ∈ MIX has an n-
decomposition, then each w ∈ MIX has a 2-
decomposition.

Proof. Assume that each w ∈ MIX has an n-

decomposition. Define a homomorphism γn : Σ∗ →
Σ∗ by

γn(a) = an,

γn(b) = bn,

γn(c) = cn.

(c) w1 = z0v1z1, w2 = z2v2z3, and �G A(u1, u2)

implies �G B(z0u1z1, z2u2z3).

We omit the details. �

We call a nonterminal A of a head grammar G use-
less if A does not appear in any derivation trees for

strings in L(G). Clearly, useless nonterminals can be

eliminated from any head grammar without affecting

the language of the grammar.

3 Decompositions of Strings in MIX

Henceforth, Σ = {a, b, c}. Let Z denote the set of in-

tegers. Define functions ψ1,ψ2 : Σ∗ → Z, ψ : Σ∗ →
Z × Z by

ψ1(w) = |w|a − |w|c,
ψ2(w) = |w|b − |w|c,
ψ(w) = (ψ1(w),ψ2(w)).

Clearly, we have ψ(a) = (1, 0),ψ(b) = (0, 1),ψ(c) =

(−1,−1), and

w ∈ MIX iff ψ(w) = (0, 0).

Note that for all strings w1,w2 ∈ Σ∗, ψ(w1w2) =

ψ(w1)+ψ(w2). In other words, ψ is a homomorphism

from the free monoid Σ∗ to Z × Z with addition as

the monoid operation and (0, 0) as identity.

Lemma 2. Suppose that G = (N,Σ, P, S) is a head
grammar without useless nonterminals such that
L(G) ⊆ MIX. There exists a function ΨG : N → Z ×
Z such that �G A(u1, u2) implies ψ(u1u2) = ΨG(A).

Proof. Since G has no useless nonterminals, for

each nonterminal A of G, there is a derivation tree

for some string in L(G) in which A appears in a node

label. By Lemma 1, there are strings z0, z1, z2 such

that �G A(u1, u2) implies z0u1z1u2z2 ∈ L(G). Since

L(G) ⊆ MIX, we have ψ(z0u1z1u2z2) = (0, 0), and

hence

ψ(u1u2) = −ψ(z0z1z2). �

A decomposition of w ∈ Σ∗ is a finite binary tree

satisfying the following conditions:

• the root is labeled by some (w1,w2) such that

w = w1w2,

• each internal node whose left and right children

are labeled by (u1, u2) and (v1, v2), respectively,

is labeled by one of (u1u2v1, v2), (u1, u2v1v2),

(u1v1, v2u2).

• each leaf node is labeled by some (s1, s2) such

that s1s2 ∈ {b, c}∗ ∪ {a, c}∗ ∪ {a, b}∗.

Thus, the label of an internal node in a decomposi-

tion is obtained from the labels of its children by left

concatenation, right concatenation, or wrapping. It

is easy to see that if G is a head grammar over the al-

phabet Σ, any derivation for w ∈ L(G) induces a de-

composition of w. (Just strip off nonterminals.) Note

that unlike with derivation trees, we have placed no

bound on the length of a string that may appear on

a leaf node of a decomposition. This will be conve-

nient in some of the proofs below.

When p and q are integers, we write [p, q] for the

set { r ∈ Z | p ≤ r ≤ q }. We call a decomposition of

w an n-decomposition if each of its nodes is labeled

by some (v1, v2) such that ψ(v1v2) ∈ [−n, n]×[−n, n].

Lemma 3. If MIX = L(G) for some head grammar
G = (Σ,N, P, S), then there exists an n such that each
w ∈ MIX has an n-decomposition.

Proof. We may suppose without loss of generality

that G has no useless nonterminal. Since MIX =

L(G), there is a function ΨG satisfying the condition

of Lemma 2. Since the set N of nonterminals of G
is finite, there is an n such that ΨG(A) ∈ [−n, n] ×
[−n, n] for all A ∈ N. Then it is clear that a derivation

tree for w ∈ L(G) induces an n-decomposition of

w. �

If w = d1 . . . dm ∈ Σm
, then for 0 ≤ i ≤ j ≤ m,

we write w[i, j] to refer to the substring di+1 . . . d j
of w. (As a special case, we have w[i, i] = ε.) The

following is a key lemma in our proof:

Lemma 4. If each w ∈ MIX has an n-
decomposition, then each w ∈ MIX has a 2-
decomposition.

Proof. Assume that each w ∈ MIX has an n-

decomposition. Define a homomorphism γn : Σ∗ →
Σ∗ by

γn(a) = an,

γn(b) = bn,

γn(c) = cn.

46

(c) w1 = z0v1z1, w2 = z2v2z3, and �G A(u1, u2)

implies �G B(z0u1z1, z2u2z3).

We omit the details. �

We call a nonterminal A of a head grammar G use-
less if A does not appear in any derivation trees for

strings in L(G). Clearly, useless nonterminals can be

eliminated from any head grammar without affecting

the language of the grammar.

3 Decompositions of Strings in MIX

Henceforth, Σ = {a, b, c}. Let Z denote the set of in-

tegers. Define functions ψ1,ψ2 : Σ∗ → Z, ψ : Σ∗ →
Z × Z by

ψ1(w) = |w|a − |w|c,
ψ2(w) = |w|b − |w|c,
ψ(w) = (ψ1(w),ψ2(w)).

Clearly, we have ψ(a) = (1, 0),ψ(b) = (0, 1),ψ(c) =

(−1,−1), and

w ∈ MIX iff ψ(w) = (0, 0).

Note that for all strings w1,w2 ∈ Σ∗, ψ(w1w2) =

ψ(w1)+ψ(w2). In other words, ψ is a homomorphism

from the free monoid Σ∗ to Z × Z with addition as

the monoid operation and (0, 0) as identity.

Lemma 2. Suppose that G = (N,Σ, P, S) is a head
grammar without useless nonterminals such that
L(G) ⊆ MIX. There exists a function ΨG : N → Z ×
Z such that �G A(u1, u2) implies ψ(u1u2) = ΨG(A).

Proof. Since G has no useless nonterminals, for

each nonterminal A of G, there is a derivation tree

for some string in L(G) in which A appears in a node

label. By Lemma 1, there are strings z0, z1, z2 such

that �G A(u1, u2) implies z0u1z1u2z2 ∈ L(G). Since

L(G) ⊆ MIX, we have ψ(z0u1z1u2z2) = (0, 0), and

hence

ψ(u1u2) = −ψ(z0z1z2). �

A decomposition of w ∈ Σ∗ is a finite binary tree

satisfying the following conditions:

• the root is labeled by some (w1,w2) such that

w = w1w2,

• each internal node whose left and right children

are labeled by (u1, u2) and (v1, v2), respectively,

is labeled by one of (u1u2v1, v2), (u1, u2v1v2),

(u1v1, v2u2).

• each leaf node is labeled by some (s1, s2) such

that s1s2 ∈ {b, c}∗ ∪ {a, c}∗ ∪ {a, b}∗.

Thus, the label of an internal node in a decomposi-

tion is obtained from the labels of its children by left

concatenation, right concatenation, or wrapping. It

is easy to see that if G is a head grammar over the al-

phabet Σ, any derivation for w ∈ L(G) induces a de-

composition of w. (Just strip off nonterminals.) Note

that unlike with derivation trees, we have placed no

bound on the length of a string that may appear on

a leaf node of a decomposition. This will be conve-

nient in some of the proofs below.

When p and q are integers, we write [p, q] for the

set { r ∈ Z | p ≤ r ≤ q }. We call a decomposition of

w an n-decomposition if each of its nodes is labeled

by some (v1, v2) such that ψ(v1v2) ∈ [−n, n]×[−n, n].

Lemma 3. If MIX = L(G) for some head grammar
G = (Σ,N, P, S), then there exists an n such that each
w ∈ MIX has an n-decomposition.

Proof. We may suppose without loss of generality

that G has no useless nonterminal. Since MIX =

L(G), there is a function ΨG satisfying the condition

of Lemma 2. Since the set N of nonterminals of G
is finite, there is an n such that ΨG(A) ∈ [−n, n] ×
[−n, n] for all A ∈ N. Then it is clear that a derivation

tree for w ∈ L(G) induces an n-decomposition of

w. �

If w = d1 . . . dm ∈ Σm
, then for 0 ≤ i ≤ j ≤ m,

we write w[i, j] to refer to the substring di+1 . . . d j
of w. (As a special case, we have w[i, i] = ε.) The

following is a key lemma in our proof:

Lemma 4. If each w ∈ MIX has an n-
decomposition, then each w ∈ MIX has a 2-
decomposition.

Proof. Assume that each w ∈ MIX has an n-

decomposition. Define a homomorphism γn : Σ∗ →
Σ∗ by

γn(a) = an,

γn(b) = bn,

γn(c) = cn.

(c) w1 = z0v1z1, w2 = z2v2z3, and �G A(u1, u2)

implies �G B(z0u1z1, z2u2z3).

We omit the details. �

We call a nonterminal A of a head grammar G use-
less if A does not appear in any derivation trees for

strings in L(G). Clearly, useless nonterminals can be

eliminated from any head grammar without affecting

the language of the grammar.

3 Decompositions of Strings in MIX

Henceforth, Σ = {a, b, c}. Let Z denote the set of in-

tegers. Define functions ψ1,ψ2 : Σ∗ → Z, ψ : Σ∗ →
Z × Z by

ψ1(w) = |w|a − |w|c,
ψ2(w) = |w|b − |w|c,
ψ(w) = (ψ1(w),ψ2(w)).

Clearly, we have ψ(a) = (1, 0),ψ(b) = (0, 1),ψ(c) =

(−1,−1), and

w ∈ MIX iff ψ(w) = (0, 0).

Note that for all strings w1,w2 ∈ Σ∗, ψ(w1w2) =

ψ(w1)+ψ(w2). In other words, ψ is a homomorphism

from the free monoid Σ∗ to Z × Z with addition as

the monoid operation and (0, 0) as identity.

Lemma 2. Suppose that G = (N,Σ, P, S) is a head
grammar without useless nonterminals such that
L(G) ⊆ MIX. There exists a function ΨG : N → Z ×
Z such that �G A(u1, u2) implies ψ(u1u2) = ΨG(A).

Proof. Since G has no useless nonterminals, for

each nonterminal A of G, there is a derivation tree

for some string in L(G) in which A appears in a node

label. By Lemma 1, there are strings z0, z1, z2 such

that �G A(u1, u2) implies z0u1z1u2z2 ∈ L(G). Since

L(G) ⊆ MIX, we have ψ(z0u1z1u2z2) = (0, 0), and

hence

ψ(u1u2) = −ψ(z0z1z2). �

A decomposition of w ∈ Σ∗ is a finite binary tree

satisfying the following conditions:

• the root is labeled by some (w1,w2) such that

w = w1w2,

• each internal node whose left and right children

are labeled by (u1, u2) and (v1, v2), respectively,

is labeled by one of (u1u2v1, v2), (u1, u2v1v2),

(u1v1, v2u2).

• each leaf node is labeled by some (s1, s2) such

that s1s2 ∈ {b, c}∗ ∪ {a, c}∗ ∪ {a, b}∗.

Thus, the label of an internal node in a decomposi-

tion is obtained from the labels of its children by left

concatenation, right concatenation, or wrapping. It

is easy to see that if G is a head grammar over the al-

phabet Σ, any derivation for w ∈ L(G) induces a de-

composition of w. (Just strip off nonterminals.) Note

that unlike with derivation trees, we have placed no

bound on the length of a string that may appear on

a leaf node of a decomposition. This will be conve-

nient in some of the proofs below.

When p and q are integers, we write [p, q] for the

set { r ∈ Z | p ≤ r ≤ q }. We call a decomposition of

w an n-decomposition if each of its nodes is labeled

by some (v1, v2) such that ψ(v1v2) ∈ [−n, n]×[−n, n].

Lemma 3. If MIX = L(G) for some head grammar
G = (Σ,N, P, S), then there exists an n such that each
w ∈ MIX has an n-decomposition.

Proof. We may suppose without loss of generality

that G has no useless nonterminal. Since MIX =

L(G), there is a function ΨG satisfying the condition

of Lemma 2. Since the set N of nonterminals of G
is finite, there is an n such that ΨG(A) ∈ [−n, n] ×
[−n, n] for all A ∈ N. Then it is clear that a derivation

tree for w ∈ L(G) induces an n-decomposition of

w. �

If w = d1 . . . dm ∈ Σm
, then for 0 ≤ i ≤ j ≤ m,

we write w[i, j] to refer to the substring di+1 . . . d j
of w. (As a special case, we have w[i, i] = ε.) The

following is a key lemma in our proof:

Lemma 4. If each w ∈ MIX has an n-
decomposition, then each w ∈ MIX has a 2-
decomposition.

Proof. Assume that each w ∈ MIX has an n-

decomposition. Define a homomorphism γn : Σ∗ →
Σ∗ by

γn(a) = an,

γn(b) = bn,

γn(c) = cn.

47

A decomposition is an n-decomposition if each node
label (u1, u2) satisfies ψ(u1, u2) ∈ [−n, n] × [−n, n].

48

(c) w1 = z0v1z1, w2 = z2v2z3, and �G A(u1, u2)

implies �G B(z0u1z1, z2u2z3).

We omit the details. �

We call a nonterminal A of a head grammar G use-
less if A does not appear in any derivation trees for

strings in L(G). Clearly, useless nonterminals can be

eliminated from any head grammar without affecting

the language of the grammar.

3 Decompositions of Strings in MIX

Henceforth, Σ = {a, b, c}. Let Z denote the set of in-

tegers. Define functions ψ1,ψ2 : Σ∗ → Z, ψ : Σ∗ →
Z × Z by

ψ1(w) = |w|a − |w|c,
ψ2(w) = |w|b − |w|c,
ψ(w) = (ψ1(w),ψ2(w)).

Clearly, we have ψ(a) = (1, 0),ψ(b) = (0, 1),ψ(c) =

(−1,−1), and

w ∈ MIX iff ψ(w) = (0, 0).

Note that for all strings w1,w2 ∈ Σ∗, ψ(w1w2) =

ψ(w1)+ψ(w2). In other words, ψ is a homomorphism

from the free monoid Σ∗ to Z × Z with addition as

the monoid operation and (0, 0) as identity.

Lemma 2. Suppose that G = (N,Σ, P, S) is a head
grammar without useless nonterminals such that
L(G) ⊆ MIX. There exists a function ΨG : N → Z ×
Z such that �G A(u1, u2) implies ψ(u1u2) = ΨG(A).

Proof. Since G has no useless nonterminals, for

each nonterminal A of G, there is a derivation tree

for some string in L(G) in which A appears in a node

label. By Lemma 1, there are strings z0, z1, z2 such

that �G A(u1, u2) implies z0u1z1u2z2 ∈ L(G). Since

L(G) ⊆ MIX, we have ψ(z0u1z1u2z2) = (0, 0), and

hence

ψ(u1u2) = −ψ(z0z1z2). �

A decomposition of w ∈ Σ∗ is a finite binary tree

satisfying the following conditions:

• the root is labeled by some (w1,w2) such that

w = w1w2,

• each internal node whose left and right children

are labeled by (u1, u2) and (v1, v2), respectively,

is labeled by one of (u1u2v1, v2), (u1, u2v1v2),

(u1v1, v2u2).

• each leaf node is labeled by some (s1, s2) such

that s1s2 ∈ {b, c}∗ ∪ {a, c}∗ ∪ {a, b}∗.

Thus, the label of an internal node in a decomposi-

tion is obtained from the labels of its children by left

concatenation, right concatenation, or wrapping. It

is easy to see that if G is a head grammar over the al-

phabet Σ, any derivation for w ∈ L(G) induces a de-

composition of w. (Just strip off nonterminals.) Note

that unlike with derivation trees, we have placed no

bound on the length of a string that may appear on

a leaf node of a decomposition. This will be conve-

nient in some of the proofs below.

When p and q are integers, we write [p, q] for the

set { r ∈ Z | p ≤ r ≤ q }. We call a decomposition of

w an n-decomposition if each of its nodes is labeled

by some (v1, v2) such that ψ(v1v2) ∈ [−n, n]×[−n, n].

Lemma 3. If MIX = L(G) for some head grammar
G = (Σ,N, P, S), then there exists an n such that each
w ∈ MIX has an n-decomposition.

Proof. We may suppose without loss of generality

that G has no useless nonterminal. Since MIX =

L(G), there is a function ΨG satisfying the condition

of Lemma 2. Since the set N of nonterminals of G
is finite, there is an n such that ΨG(A) ∈ [−n, n] ×
[−n, n] for all A ∈ N. Then it is clear that a derivation

tree for w ∈ L(G) induces an n-decomposition of

w. �

If w = d1 . . . dm ∈ Σm
, then for 0 ≤ i ≤ j ≤ m,

we write w[i, j] to refer to the substring di+1 . . . d j
of w. (As a special case, we have w[i, i] = ε.) The

following is a key lemma in our proof:

Lemma 4. If each w ∈ MIX has an n-
decomposition, then each w ∈ MIX has a 2-
decomposition.

Proof. Assume that each w ∈ MIX has an n-

decomposition. Define a homomorphism γn : Σ∗ →
Σ∗ by

γn(a) = an,

γn(b) = bn,

γn(c) = cn.

(c) w1 = z0v1z1, w2 = z2v2z3, and �G A(u1, u2)

implies �G B(z0u1z1, z2u2z3).

We omit the details. �

We call a nonterminal A of a head grammar G use-
less if A does not appear in any derivation trees for

strings in L(G). Clearly, useless nonterminals can be

eliminated from any head grammar without affecting

the language of the grammar.

3 Decompositions of Strings in MIX

Henceforth, Σ = {a, b, c}. Let Z denote the set of in-

tegers. Define functions ψ1,ψ2 : Σ∗ → Z, ψ : Σ∗ →
Z × Z by

ψ1(w) = |w|a − |w|c,
ψ2(w) = |w|b − |w|c,
ψ(w) = (ψ1(w),ψ2(w)).

Clearly, we have ψ(a) = (1, 0),ψ(b) = (0, 1),ψ(c) =

(−1,−1), and

w ∈ MIX iff ψ(w) = (0, 0).

Note that for all strings w1,w2 ∈ Σ∗, ψ(w1w2) =

ψ(w1)+ψ(w2). In other words, ψ is a homomorphism

from the free monoid Σ∗ to Z × Z with addition as

the monoid operation and (0, 0) as identity.

Lemma 2. Suppose that G = (N,Σ, P, S) is a head
grammar without useless nonterminals such that
L(G) ⊆ MIX. There exists a function ΨG : N → Z ×
Z such that �G A(u1, u2) implies ψ(u1u2) = ΨG(A).

Proof. Since G has no useless nonterminals, for

each nonterminal A of G, there is a derivation tree

for some string in L(G) in which A appears in a node

label. By Lemma 1, there are strings z0, z1, z2 such

that �G A(u1, u2) implies z0u1z1u2z2 ∈ L(G). Since

L(G) ⊆ MIX, we have ψ(z0u1z1u2z2) = (0, 0), and

hence

ψ(u1u2) = −ψ(z0z1z2). �

A decomposition of w ∈ Σ∗ is a finite binary tree

satisfying the following conditions:

• the root is labeled by some (w1,w2) such that

w = w1w2,

• each internal node whose left and right children

are labeled by (u1, u2) and (v1, v2), respectively,

is labeled by one of (u1u2v1, v2), (u1, u2v1v2),

(u1v1, v2u2).

• each leaf node is labeled by some (s1, s2) such

that s1s2 ∈ {b, c}∗ ∪ {a, c}∗ ∪ {a, b}∗.

Thus, the label of an internal node in a decomposi-

tion is obtained from the labels of its children by left

concatenation, right concatenation, or wrapping. It

is easy to see that if G is a head grammar over the al-

phabet Σ, any derivation for w ∈ L(G) induces a de-

composition of w. (Just strip off nonterminals.) Note

that unlike with derivation trees, we have placed no

bound on the length of a string that may appear on

a leaf node of a decomposition. This will be conve-

nient in some of the proofs below.

When p and q are integers, we write [p, q] for the

set { r ∈ Z | p ≤ r ≤ q }. We call a decomposition of

w an n-decomposition if each of its nodes is labeled

by some (v1, v2) such that ψ(v1v2) ∈ [−n, n]×[−n, n].

Lemma 3. If MIX = L(G) for some head grammar
G = (Σ,N, P, S), then there exists an n such that each
w ∈ MIX has an n-decomposition.

Proof. We may suppose without loss of generality

that G has no useless nonterminal. Since MIX =

L(G), there is a function ΨG satisfying the condition

of Lemma 2. Since the set N of nonterminals of G
is finite, there is an n such that ΨG(A) ∈ [−n, n] ×
[−n, n] for all A ∈ N. Then it is clear that a derivation

tree for w ∈ L(G) induces an n-decomposition of

w. �

If w = d1 . . . dm ∈ Σm
, then for 0 ≤ i ≤ j ≤ m,

we write w[i, j] to refer to the substring di+1 . . . d j
of w. (As a special case, we have w[i, i] = ε.) The

following is a key lemma in our proof:

Lemma 4. If each w ∈ MIX has an n-
decomposition, then each w ∈ MIX has a 2-
decomposition.

Proof. Assume that each w ∈ MIX has an n-

decomposition. Define a homomorphism γn : Σ∗ →
Σ∗ by

γn(a) = an,

γn(b) = bn,

γn(c) = cn.

Main Lemma

49

Lemma.
z = a5 b14 a19 c29 b15 a5 has no 2-decomposition.

We have shown that each node ofD� is labeled by

a pair of strings of the form (γn(u), γn(v)) such that

ψ(γn(u)γn(v)) ∈
{−2n,−n, 0, n, 2n} × {−2n,−n, 0, n, 2n}.

Now it is easy to see that inverting the homo-

morphism γn at each node of D� gives a 2-

decomposition of w. �

4 A String in MIX That Has No

2-Decomposition

By Lemmas 3 and 4, in order to prove that there is no

head grammar for MIX, it suffices to exhibit a string

in MIX that has no 2-decomposition. The following

is such a string:

z = a5b14a19c29b15a5.

In this section, we prove that the string z has no 2-

decomposition.
7

It helps to visualize strings in MIX as closed

curves in a plane. If w is a string in MIX, by plotting

the coordinates of ψ(v) for each prefix v of w, we can

represent w by a closed curve C together with a map

t : [0, |w|] → C. The representation of the string z is

given in Figure 2.

Let us call a string w ∈ {a, b, c}∗ such that ψ(w) ∈
[−2, 2] × [−2, 2] long if w contains all three letters,

and short otherwise. (If ψ(w) � [−2, 2] × [−2, 2],

then w is neither short nor long.) It is easy to see

that a short string w always satisfies

|w|a ≤ 4, |w|b ≤ 4, |w|c ≤ 2.

The maximal length of a short string is 6. (For ex-

ample, a4c2
and b4c2

are short strings of length 6.)

We also call a pair of strings (v1, v2) long (or short)
if v1v2 is long (or short, respectively).

According to the definition of an n-

decomposition, a leaf node in a 2-decomposition

must be labeled by a short pair of strings. We call

a 2-decomposition normal if the label of every

internal node is long. Clearly, any 2-decomposition

7
This fact was first verified by the computer program ac-

companying this paper. The program, written in C, imple-

ments a generic, memoized top-down recognizer for the lan-

guage {w ∈ MIX | w has a 2-decomposition }, and does not rely

on any special properties of the string z.

0 5

19 38

67

82 87 a5

b14

a19

c29

b15

a5

Figure 2: Graphical representation of the string z =
a5b14a19c29b15a5

. Note that every point (i, j) on the di-

agonal segment has i > 7 or j < −2.

can be turned into a normal 2-decomposition by

deleting all nodes that are descendants of nodes

with short labels.

One important property of the string z is the fol-

lowing:

Lemma 5. If z = x1vx2 and ψ(v) ∈ [−2, 2]× [−2, 2],
then either v or x1x2 is short.

Proof. This is clear from the graphical representa-

tion in Figure 2; if a substring v of z has ψ(v) ∈
[−2, 2] × [−2, 2], then the subcurve corresponding

to v must have initial and final coordinates whose

difference lies in [−2, 2] × [−2, 2]. �

Lemma 5 leads to the following observation. Let

us call a decomposition of a string concatenation-
free if each of its non-leaf labels is the wrapping of

the labels of the children.

Lemma 6. If z has a 2-decomposition, then z has a
normal, concatenation-free 2-decomposition.

Proof. Let D be a 2-decomposition of z. Without

loss of generality, we may assume that D is nor-

mal. Suppose that D contains a node µ whose la-

bel is the left or right concatenation of the labels

of its children, (u1, u2) and (v1, v2). We only con-

sider the case of left concatenation since the case

of right concatenation is entirely analogous; so we

suppose that the node µ is labeled by (u1u2v1, v2).

It follows that z = x1u1u2x2 for some x1, x2, and

by Lemma 5, either u1u2 or x1x2 is short. If u1u2

is short, then the left child of µ is a leaf because

ba c

50

51

