Pumping Lemma for m-MCFLwn

Theorem (Kanazawa 2009).
L € m-MCFLwn = L is 2m-iterative.

The proof of the Pumping Lemma for m-MCFLwn is more complex.

Pumping Lemma for PDA

stack
height

A

QI

Lo Vi U1 %) us time

® —(All but finitely many accepting computations
reach stack height [Q]?)

® { w|w has an accepting computation that
doesn’t reach stack height |Q|? } is regular

The proof in each case is somewhat similar to the proof of the pumping lemma for CFLs
using PDA, rather than CFG.

set of accepting computations of

PDA M
stack height stack height
stays below |QJ? excceds |Q|?

"4 N

accepts a regular set R accepts a 2-iterative set

may be infinite

(VIX1V2,. . .,V2m=1XmV2m)

B\ ‘even m-pump”

|

(X1, . .sXm)

w has a derivation tree with even m-pump
= w is 2m-pumpable

W=UuoV|uy... V2m Um
VI ... V2m F &
uo vi" Ui ... vam" u2m € L(G) foralln = 0

set of derivation trees of
G € m-MCFGwn

without

with even m-pump
even m-pump

"4 N

yields L' € (m—1)-MCFLwn yields a 2m-iterative set

may be infinite

If the derivation tree contains an even m-pump, the string is 2Zm-pumpable.
Otherwise, the string is in the language of some w.n. (m-1)-MCFG, and therefore is 2(m-1)-

pumpable (disregarding finitely many exceptions).
Proof by induction on m.

set of derivation trees
of G €¢ m-MCFGuw

E—

projection

~ without

with even m-pump
even m-pump

—

no even m-pump

\

set of derivation trees MSO-definable subset
of G' € m-MCFGwn

\

find an equivalent (m—1)-MCFGwn

m-proper rules

B(X1Y1Z1, Z2Y2a, Y3bcxad) +
A(X1, X2), B(Y1, Y2, ¥3), C(Z1, Z2)

m-proper on the second subgoal

The “spine” of an even m-pump consists of m-proper rules

(VIX1V2,. . .sV2m—1XmVY2m)

/

B

§

|

e esXm)

(x1,

m-degree

® m-degree of a rule is 0 if dimention of left-
hand side nonterminal < m

® otherwise m-degree = number of right-
hand side nonterminals of dimension m

B(X1y1X2, Z1Y2ay3b, cZod) + m =3
A(X|, X2), B(Y1, Y2, ¥3), C(Z1, Z2)

m-degree = |

Program Transformation

m-MCFGwn with no even m-pumps

v

no m-proper rules

\d

total m-degree = 0

Y

(m=1)-MCFGun

The proof of this claim is by successive transformations on the grammar.

m=2
TTi: S(X1x2) + B(x1, X2)

T12: B(axib, oxad) + A(x1,x2) ~ m-proper rule
T13: A(axibxac, d) « A(Xi, X2)
TT4: A(E, €) +

* unfolding

TTi: S(X1x2) + B(xi, X2)

TT2 o TT3: B(aax bxacb, cdd) + A(X|, X2)
TT2 o TT4: B(ab, cd) +

T13: A(axbxac, d) < A(x), X2)

TT4: A(E, €) &

A rule is m-proper if the head nonterminal is m-ary and there is an m-ary nonterminal on
the right-hand side, each of whose arguments appear in the corresponding argument of the

head nonterminal.

Unfold until there is no m-proper rule. This procedure terminates because the grammar does
not allow an even m-pump.

T S(x1x2) + B(x1, X2)

TTs: B(aax bxacb, cdd) <+ A(X1,X2) m-degree
TTe: B(ab, cd) +

T13: A(axi1bxac, d) « A(x), X2) m-degree
TT4: A(E, €) &

* unfolding™'

TTi: S(X1x2) + B(Xi, X2)
TTs.1: B(aaxcb, cdd) + C(x)
Tis52: C(X1bx2) < A(X), X2)
TT2: B(ab, cd) +

T13.1: A(axc, d) < D(x)
TT32: D(X1bxy) < A(Xi, X2)
TT4: A(E, €) «

Tl5 = Tl5.| o TT52

B P Fc e A B BT R 1 Bz o)

The m-degree of a rule is O if the arity of the head nonterminal is < m; otherwise it’s the
number of m-ary nonterminals on the right-hand side.

Do the converse of unfolding.

TTi: S(X1x2) + B(x1, X2)
TTs.1: B(aaxcb, cdd) < C(x)
TTs52: C(x1bx2) « A(X1, X2)
TT2: B(ab, cd) +
T13.1: A(axc, d) + D(x)
TT32: D(X1bx2) < A(XI, X2)
TT4: A(E, €) «

* unfolding
TT) o TTs.1: S(aaxcbcdd) < C(x)
TT| o TT2: S(abcd)
Ti52 o T13.1: C(axcbd) < D(x)
TTs2 0 TT4: C(b)
TT32 o T13.1: D(axcbd) < D(x)
T320 T4 D(b) «

Now each rule contains m-ary nonterminals only on one side of the rule, if any. Unfolding
eliminates all m-ary nonterminals.

Program Transformation

m-MCFGwn with no even m-pumps

* unfolding

no m-proper rules
* unfolding™'

total m-degree = 0

* unfolding
(m—1)-MCFGwn

Reduction of m-degrees

B(X1Y1Zi, Z2y2ay3b, cX2d)
A(X, X2), B(Y1, Y2, ¥3), C(Z1, Z2)

* unfolding™'

B(xiwi, wab, cxad) + A(X1, X2), D(W1, w>)
D(y 1z, Z2y2ay3) < B(y), Y2, Y3), C(Z1, Z2)

The well-nestedness assumption is necessary in the second step.

Here’s a case of a well-nested rule.

Reduction of m-degrees

| mE \ m =3
B(x1yiXx2, Z1y2ay3b, cz,d)

A(X1, X2), B(Y1, Y2, ¥3), C(Z1, Z2)

* unfolding™'

If a rule is non-well-nested, the procedure does not work.

set of derivation trees of
G € m-MCFGwn

without

with even m-pump
even m-pump

"4 N

yields L' € (m—1)-MCFLwn yields a 2m-iterative set

may be infinite

If the derivation tree contains an even m-pump, the string is 2Zm-pumpable.
Otherwise, the string is in the language of some w.n. (m-1)-MCFG, and therefore is 2(m-1)-

pumpable (disregarding finitely many exceptions).
Proof by induction on m.

Pumping Lemma for m-MCFLwn

Theorem (Kanazawa 2009).
L € m-MCFLwn = L is 2m-iterative.

The proof of the Pumping Lemma for m-MCFLwn is more complex.

Reduction of m-degrees

[l
N

s .
B(x1y1xayab, Zic)
A(x1, X2), B(y!1, ¥2), C(Z1)

* unfolding™'

B(wib, z\c) « D(w)), C(z))
D(xyix2y2) < A(xi, x2), B(yi, y2)

For m = 2, the procedure works even when the rule is non-well-nested.

Pumping Lemma for 2-MCFL

Theorem (Kanazawa 2009).
L € 2-MCFL = L is 4-iterative.

The Pumping Lemma holds for 2-MCFL.

4-iterative 2m-iterative 2k iterative

I TAL jTAL i TAL

MCFL = | Jm-MCFL yCFT_ = JyCFT_(m—I) c=lic

m2| m2| k>|

MCFL =| Jm-MCFL

m2|

The proof shows that a 2-MCFL is 4-iterative.

Counterexample in 3-MCFL

H(xy) < G(xi, X2, X3)
G(axi, yicxacdyadxs, y3b) « G(xi1, X2, X3), G(Y1, Y2, Y3)
G(a, €, b) +

a=¢&b:=¢
7 V8 SR
bijection

V—o>¢e|cVcdVd Vc Dy

Pumping fails for m-MCFLs for (m > 2).

Here’s an example of a 3-MCFL that is not k-iterative for any k.

tree representation of Dy’

C d
/\ /\
C d C d
n m
T T> T3 T4
d C

a!'c @ (TI T2) cd @ (T3 T4) d b

perfect binary tree

C d

/\ /\

C d C d

L R A L, R
d C

Li=c¢R =d
-
Vot = a"lcv,cdv,d b Vo = €

not pumpable

Lemma.

w e fac{va|n=0}) A ww e fac(H)

|

@(W) € ¢ | Vedc' | & | d'cdV d | Vedc* | d¥edV

v € H is said to be almost anti-iterative if

V=Uo Wl Ul ... WkUk AW ... wg # Eforany k = |
implies
there is at most one i > | such that
uowi'ur ... wil ux € H

Theorem. For each n = 0, v, is almost anti-iterative.

vo = aac accdd bedaceddbdb b

w1 U1 w2 w3

winwiws = aac aac acédd béd aceddbdb bed aceddbdb bb € H
— = S—

v1 v1 v1
W

V2

w%ulwgwg’ =

aac aac aac accdd bed aceddbdb bed aceddbdb béd acéddbdb bbb ¢ H
— = — ~—
VU1 VU1 U1 VU1

N———— —

V2

-~

7 H

Corollary. There is a 3-MCFL that is not k-iterative
for any k.

Kanazawa, Kobele, Michaelis, Salvati, & Yoshinaka 20| x

MCFL vs. MCFL, vs. €
/H {wiw |w e D’}

o Kanazawa and Salvati 2010

{whwiw |w € D'}

"...d) [n>0]} Engelfriet and Skyum 1976

{w™! | w e {a,b}*}

RESP,,
Staudacher 1993

Michaelis 2005

{w.wzwz ..zwz w' . owh
n]

Ry Yo 1| JRNER Sk T I b o |

neN,w e{cd},z ...z, €D}

29
Since every language in C is k-iterative for some k, this language separates MCFL from C.

Limited Cross-Serial
Dependencies

“MCSGs capture only certain kinds of
dependencies, such as nested dependencies and
certain limited kinds of crossing dependencies (for
example, in subordinate clause constructions in
Dutch or some variations of them, but perhaps not
in the so-called MIX ... language ...)”

Joshi,Vijay-Shanker, and Weir 1991

MIX ={w e {a,b,c}* | IW|a = |W|p = |W|c }

The language MIX was supposed to be outside of the class of mildly context-sensitive
languages.

“[No human language] has ... complete freedom for
order.” Bach |98

“[MIX represents] an extremely case of the degree
of free word order permitted in a language ... which
is linguistically not relevant.” Joshi 1985

“... it seems rather unlikely that any natural
language will turn out to have a MIX-like
characteristic.” Gazdar 1985

“TAGs cannot generate this language, although for
TAGs the proof is not in hand yet.” Joshi 1985

“I conjecture that this language is not indexed.”
Marsh 1986

“It is not known whether TAG ... can generate MIX.
This has turned out to be a very difficult problem.”

Joshi et al. 1991

Some Facts about MIX

rational transduction

L = L), & g h R (Lz — g(h_l(L|) N R))

g, h: homomorphisms
R: regular set

Li=sbhelizbhal <L

rationally equivalent

L is a rational cone & L is closed under >

Some Facts about MIX

MIX = O

O, ={we{a,ab,b}||W|=|W|a|W = |wW|s}

g(02 n (a u b u ab)”) = MIX

gla)=a
g(b) =b
g(a) =c
g(b) = € O, = MIX

h='(MIX n (a? u (ab)? u (bc)?u ?)") = 0,
h(a) = a?
h(a) = (bc)?
h(b) = (ab)?
h(b) = 2

MIX = Oy

Combinatorial Group
Theory

“... it does not ... seem to be known whether or not
the word problem of Z x Z is indexed.” Gilman 2005

0,

Theorem (Salvati). 0, € 2-MCFL

S(xy) <« Inv(x, y)

Inv(x1y1, yox2) < Inv(x1, x2), Inv(y1, y2)
Inv(x1x2y1, y2) < Inv(x1, x2), Inv(y1, y2)
Inv(yl, X1X2y2) < /nV(Xl, X2), Inv(yl,)/2)
Inv(y1x1x2, y2) < Inv(x1, x2), Inv(y1, y2)
Inv(y1, y2x1x2) <= Inv(x1, x2), Inv(y1, y2)

Inv(axia, x2) < Inv(xy, x2)

Inv(axy, axz) < Inv(xy, x2)

Inv(axy, xoa) < Inv(xy, x2)

Inv(x1a, axo) < Inv(xy, x2)

Inv(x1a, o) < Inv(x1, x2)

Inv(x1, axoa) < Inv(xy, x2)
Inv(x1y1X2, y2) — InV(X1, X2)7 InV(Yla)/2)

Inv(x1, y1xay2) < Inv(x1, x2), Inv(y1, y2)
Inv(e, €) <

where a € {a; b}
Theorem: Given wy and ws such that wiws € O, Inv(wy, wp) is derivable.

The words in O3 are precisely the words that are represented as closed curves:
babbababbabbabbababbaaabbbabbaaaabbabbbaba

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two
points A’ and D’ inside J such that /ﬁ — W then there are two points B and C
pairwise distinct from A and D such tI:lat A, \B, C, and D appear in that order on one
of the arcs going from A to D and AD = BC.

two-sided Dyck language

MIX = O, = Shuffle(D/*, D"

Fact. Shuff|e(D|*, D|*) ¢ 2-MCFL

40

The one-sided analogue of O2 (the set of curves within the first quadrant) is not a 2-MCFL.
This can be proved with the Pumping Lemma for 2-MCFL (Kanazawa 2009).

MIXk={we{a,..a}* [Pw)=n-(l,...1)}

MIX = MIX3

Fact. If L is a rational cone and contains MIXj for all
k, then L contains all commutative semilinear languages.

Generalization of MIX.

Fact.

MIX ¢ 2-MCFL(1)
MIX4 ¢ 2-MCFLwn

MIXi+1 & k-MCFL(I)
MIXi+2 & k-MCFLyr

Appropriate refinements of the Pumping Lemma for MCFLwn give these facts.

Question. MIXs ¢ MCFL !

Question. MIX ¢ MCFLwn !

Currently have no idea how to prove these.

Theorem. MIX ¢ 2-MCFLwx.

Kanazawa & Salvati 2012

Head Grammars

A(x1X2y1,¥2) < B(x1,x2),C(y1,¥2) left concatenation
A(x1,Xx2y1y2) <« B(x1,x2),C(y1,¥2) right concatenation

A(x1y1,y2X2) < B(x1,x2), C(y1,¥2) wrapping
AWy, wa) «

wi, wr € 2 U {g]

normal form for 2-MCFGwn,

yi(w) = [wlg — [wle,
Yo(w) = [wlp — [wle,

p(w) = (W1(w), Ya(w)).

weMIX iff w(w) = (0,0).

Lemma 2. Suppose that G = (N,2Z,P,S) is a head
grammar without useless nonterminals such that
L(G) C MIX. There exists a function Wg: N — Z X

Z. such that +g A(uy, up) implies Y(uijuy) = Yg(A).

A decomposition of w € X* 1s a finite binary tree
satisfying the following conditions:

e the root is labeled by some (w1, w;) such that
W = WwWiwm,

e cach internal node whose left and right children

are labeled by (u;, u>) and (vy, v»), respectively,
1s labeled by one of (ujurvyi,vy), (uy, urvivy),
(u1vy, vaua).

e cach leaf node is labeled by some (s, $2) such
that s;so € {b,c}* Ula,c}” Ula, b} .

A decomposition is an n-decomposition if each node
label (u1, uz) satisfies b(ui, u2) € [-n,n] X [—n, n].

Lemma 3. If MIX = L(G) for some head grammar
G=(,N,P,S), then there exists an n such that each
w € MIX has an n-decomposition.

Lemma 4. If each w € MIX has an n-

decomposition, then each w € MIX has a 2-
decomposition.

Main Lemma

Lemma.
z =a b a'” ¢?° b'> a@° has no 2-decomposition.

