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The convergence of mildly context-
sensitive grammar formalisms

Joshi, Vijay-Shanker, and Weir 1991

CSL

CFL
 TAG ≡ CCG ≡ LIG ≡ HG

Title of this talks comes from Joshi et al.’s paper
Four independently developed formalisms found to be equivalent
The class of languages characterized by the four formalisms is robust, which shows its 
importance



Mildly context-sensitive 
grammar formalisms

• Limited cross-serial dependencies

• constant growth

• polynomial parsing

“… roughly characterize a class of grammars (and 
associated languages) that are only slightly more powerful 
than context-free grammars (context-free languages)”

Joshi 1985

Called “mildly context-sensitive” because extends CFL only slightly
Three properties to be satisfied by grammars in between CF and CS



Limited cross-serial dependencies

 ww
 anbncndn

 www

 anbncndnen

 MIX?

  MIX = { w ∈{a,b,c}∗ | #
a
(w ) = #

b
(w ) = #

c
(w ) }

Informal, difficult to understand, meant to exclude these languages (at least in the case of 
the specific limit with TAGs)



Constant growth

• Weakening of 
semilinearity

  {an2

| n ≥ 0 }
  {a2n

| n ≥ 0 }

Simplification of semilinearity for expository purposes



Polynomial parsing

• Containment 
in P

• Containment 
in LOGCFL

LOGCFL
P

CFL

Much better to say LOGCFL than P



Another point of convergence

 

MCTAG ≡ MCFG ≡ HR

≡ OUT(DTWT)

≡ yDT
fc
(REGT) ≡ LUSCG

≡ MG ≡ ACG
(2,4)

LOGCFL

CFL

 TAG ≡ CCG ≡ LIG ≡ HG

The “convergence of mildly context-sensitive ...” orignally referred to TAG, CCG, LIG, HG, but 
in retrospect, ...
A greater number of equivalent formalisms, more diverse



Multiple context-free grammars

yield = tuple of strings

derivation tree

 S

 A  B

 am  bn  cm  dn

 bn  dn

 cm am

  

S(x
1
y

1
x

2
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2
) :− A(x

1
, x

2
),B(y

1
, y

2
).

A(ε ,ε ).

A(ax
1
,cx

2
) :− A(x

1
, x

2
).

  

B(ε ,ε ).

B(by
1
,dy

2
) :− B(y

1
, y

2
).

This is an example of a 2-MCFG.
An m-MCFG allows nonterminals to take up to m arguments.



•  

•  

• Each xi,j occurs at most once in t1…tr

m-multiple context-free grammars

  G = (N,Σ,P ,S)

  S ∈N(1)

  
B(t

1
,…, t

r
) :− B

1
(x

1,1
,…, x

1,r1
),…,B

n
(x

n,1
,…, x

n,rn
).

Seki et al. 1991

  t1…t
r
∈(Σ∪ X )∗

  B ∈N( r ) ,B
i
∈N( ri )

    L(G ) = { w ∈Σ∗∣P  S(w ) }

   
N = N( r )

r≤m


ranked alphabet



Second-order ACGs

yield = linear lambda term

derivation tree

 S

 A  B

 am  bn  cm  dn

 bn  dn

 cm am

  

S(λz.X(λx
1
x

2
.Y(λy

1
y

2
.x

1
(y

1
(x

2
(y

2
z))))))) :− A(X ),B(Y ).

A(λw .w(λz.z)(λz.z)).

A(λw .X(λx
1
x

2
.w(λz.a(x

1
z))(λz.c(x

2
z)))) :− A(X ).

  λw .w
  λw .w

  /abc/ = λz.(a(b(cz)))

This ACG encodes the example MCFG in the sense that there’s a canonical correspondence 
between strings and linear lambda-terms
ACG_{(2,4)} because the type of the yield is up to fourth order



An infinite hierarchy

CFL

1

2
3

m    
MCFL = m-MCFL

m≥1


TAL

Each level of the hierarchy is equivalently defined by various other formalisms.
Not by ACG_{(2,4)}, however.



Consensus?

“MCTAGs also belong to the class of MCSGs and 
are in fact equivalent to LCFRSs.” 

Joshi, Vijay-Shanker, and Weir 1991

“The class of mildly context-sensitive languages 
seems to be most adequately approached by 
LCFRS.”

Groenink 1997

Because of the robustness of the class of MCFLs, a consensus seems to have emerged.
MCFL = MCSL



Consensus?

“Each MG … can be converted into a linear 
context-free rewriting system …  In this sense MGs 
fall into the class of mildly context-sensitive 
grammars …” 

Michaelis 1998 



Yet another point of convergence

LOGCFL

CFL

 TAG ≡ CCG ≡ LIG ≡ HG

 

MCTAG ≡ MCFG ≡ HR

≡ OUT(DTWT)

≡ yDT
fc
(REGT) ≡ LUSCG

≡ MG ≡ ACG
(2,4)

 

MCFG
wn

≡ CCFG ≡ Macro
nd

≡ ACG
(2,3)

The topic of this talk



Well-nested MCFGs
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✓
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Cf. Kuhlmann 2007

Assume all rules are non-permuting.



Two infinite hierarchies

1

2
3

m

   
MCFL = m-MCFL

m≥1


CFL

1

2

3

m

CFL

TALTAL

   
MCFL

wn
= m-MCFL

wn
m≥1




Two infinite hierarchies

1

2
3

m

   
MCFL = m-MCFL

m≥1


CFL

1

2

3

m

CFL

TALTAL

   
MCFL

wn
= m-MCFL

wn
m≥1


• How different are they?

• Which is a better formalization of “mildly 
context-sensitive grammar”?



m-MCFL vs. m-MCFLwn

 RESP
2
∈2-MCFL − 2-MCFL

wn
Seki et al. 1991

   RESP
2
= { a

1
ia

2
i b

1
jb

2
ja

3
i a

4
i b

3
jb

4
j∣i, j ≥ 0 } Weir 1989

  RESP
m
∈m-MCFL − m-MCFL

wn
for m ≥ 2

Seki and Kato 2008

   RESP
m
= { a

1
ia

2
i b

1
jb

2
j …a

2m−1
i a

2m
i b

2m−1
j b

2m
j ∣i, j ≥ 0 }

  RESP
m
∈2m-MCFL

wn

Separation is easy at each level



MCFL vs. MCFLwn

 ww
 anbncndn

 www
 anbncndnen

 MIX?

  {an2

| n ≥ 0 }
  {a2n

| n ≥ 0 }

    

{ w
1
…w

n
z
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z

n−1…z
1
w

1
z

0
w

1
R …w

n
R∣

n ∈,w
i
∈{a,b}+ , z

n
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0
∈D∗

1
}

Staudacher 1993
Michaelis 2005?

Much less clear with entire classes
D_1^* Dyck language



Limited cross-serial dependencies

Joshi 1985

Which better captures mildly context-sensitivity



  

S(x
1
x

2
x

3
) :− A(x

1
, x

2
, x

3
).

A(ax
1
,bx

2
,cx

3
) :− A(x

1
, x

2
, x

3
).

A(ε ,ε ,ε ).

TAG is a 2-MCFG.

dependent sets → components of a derived tuple 



TAG is a well-nested MCFG.



A mildly context-sensitive grammar
 is a well-nested MCFG.

Limited amount of cross-serial dependencies 
→ m-MCFG for some m

Nesting properties → well-nested MCFG

Limited cross-serial dependencies



Pumpability
L is k-pumpable if there is a p satisfying the 
following condition:

for all z∈L with |z|≥p, z can be written as

  z = u
0
v

1
u

1
…u

k−1vk
u

k

in such a way that 

  

0 < |v
1
…v

k
|≤ p,  and

u
0
v

1
iu

1
…u

k−1vk
i u

k
∈L for all i ≥ 0.

Groenink 1997

Pumpability is related to semilinearity.



Pumping Lemma

Myth.  If L is an m-MCFL, then L is 2m-pumpable.

Radzinksi 1991, Groenink 1997, Kracht 2003

Theorem.  If L is an m-MCFLwn, then L is 
2m-pumpable.

Kanazawa 2009



Revised definition of 
mild context-sensitivity

• limited cross-serial dependencies, 
reduplication, and parallelism

• finite pumpability

• polynomial parsing

Question.  Is every m-MCFL finitely pumpable?

Groenink 1997

Meant to capture a superclass of MCFL, but does it really?
Cross-serial + coordination



Polynomial parsing
fixed language recognition universal recognition

CFG LOGCFL-complete P-complete

m-MCFGwn LOGCFL-complete P-complete

m-MCFG LOGCFL-complete NP-complete (m≥2)

MCFGwn LOGCFL-complete ?

MCFG LOGCFL-complete PSACE-complete/
EXPTIME-complete



Mildly context-sensitive 
grammars

Is the notion of mild context-sensitivity most 
adequately captured by MCFGs?

Or by well-nested MCFGs?



The convergence of well-nested 
mildly context-sensitive grammar 

formalisms

m-MCFGwn CCFG(m)

  Macro
nd

(m −1)  2m-ACG
(2,3)

bottom-up top-down



  
A
⎛
⎝⎜

⎞
⎠⎟

:− B(X ),B(Y ),C(Z ).

Top-down vs. bottom-up

 A →  B

 B
 C

 X

 Y
 Z



Well-nested mildly context-
sensitive grammar formalisms

m-MCFGwn CCFG(m)

  Macro
nd

(m −1)  2m-ACG
(2,3)

bottom-up top-down

Upper two non-permuting (viewed from the point of view of the lower two)



Well-nested mildly context-
sensitive grammar formalisms

m-MCFGwn CCFG(m)

  Macro
nd

(m −1)  2m-ACG
(2,3)

Rambow and Satta 1999

LUSCG(m)m-MCFG



Well-nested mildly context-
sensitive grammar formalisms

m-MCFGwn CCFG(m)

  Macro
nd

(m −1)  2m-ACG
(2,3)

de Groote and Pogodalla 2004



Well-nested mildly context-
sensitive grammar formalisms

m-MCFGwn CCFG(m)

  Macro
nd

(m −1)  2m-ACG
(2,3)

dG et al. 200x



Well-nested mildly context-
sensitive grammar formalisms

m-MCFGwn CCFG(m)

  Macro
nd

(m −1)  2m-ACG
(2,3)

Seki and Kato 2008



Well-nested mildly context-
sensitive grammar formalisms

m-MCFGwn CCFG(m)

  Macro
nd

(m −1)  2m-ACG
(2,3)

Do it this way, but no means the only easy way



m-MCFGwn → CCFG(m) 
bottom-up

  S → C [1]A[1]aA[2]C [2]bC [3]

top-down

  S(z
1
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1
ax

2
z

2
bz

3
) :− C(z

1
, z

2
, z

3
), A(x

1
, x

2
).

  C(z
1
x

1
, x

2
z

2
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2
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3
) :− A(x

1
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2
),B(y

1
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),C(z

1
, z

2
, z

3
).

  (C
[1] ,C [2] ,C [3] )→ (C [1]A[1] , A[2]C [2] ,B[1]B[2]C [3] )

  S ⇒ C [1]A[1]aA[2]C [2]bC [3] ⇒ C [1]A[1]A[1]aA[2]A[2]C [2]bB[1]B[2]C [3]

Have to keep track of links in the case of LUSCG, but not with CCFG



Extended Dyck set

ED(N, Σ) is the language defined by the following CFG:

   
N = N( r )

r


ranked alphabet

  

S → ε
S → aS (a ∈Σ)

S → ′S S

′S → B[1] SB[2]…B[ r−1] SB[ r ] (B ∈N( r ) )

LL(1)

set of r parentheses



Coupled-context-free grammars

  G = (N,Σ,P ,S)

  S ∈N(1)

  (B
[1] ,…,B[ r ] )→ (β

1
,…,β

r
) β

1
…β

r
∈ED(N,Σ)

• Sentential forms are in ED(N, Σ)

• α0 B1 α1 … αr−1 Br αr ⇒ α0 β1 α1 … αr−1 βr αr if 

α1,…,αr−1∈ ED(N, Σ).

Hotz and Pitsch 1996



CCFG(m) → Macrond(m−1)

  S → C(A(a),b)

top-down

  C(x
1
, x

2
)→ C(A(x

1
), x

2
B(ε ))

  S ⇒ C(A(a),b) ⇒ C(A(A(a)),bB(ε ))

  S → C [1]A[1]aA[2]C [2]bC [3]

top-down

  (C
[1] ,C [2] ,C [3] )→ (C [1]A[1] , A[2]C [2] ,B[1]B[2]C [3] )

  S ⇒ C [1]A[1]aA[2]C [2]bC [3] ⇒ C [1]A[1]A[1]aA[2]A[2]C [2]bB[1]B[2]C [3]

non-duplicating, non-deleting, non-permuting



Nested terms
NT(N, Σ) is the language defined by the left CFG below:

r times
  

S → ε
S → aS (a ∈Σ)

S → ′S S

′S → B(S,…,S) (B ∈N( r ) )   

S → ε
S → aS (a ∈Σ)

S → ′S S

′S → B[1] SB[2]…B[ r ]SB[ r+1]

ED(inc(N), Σ)NT(N, Σ)

LL(1)

NT(N,Sigma) and ED(inc(N),Sigma) isomorphic



Non-duplicating macro grammars

  G = (N,Σ,P ,S)

  S ∈N(0)

  B(x
1
,…, x

r
)→ β

•  

• Non-duplicating if each xi occurs in β at most 
once

• Sentential forms are in NT(N, Σ)

• α0 B(α1,…,αr) αr+1 ⇒ α0 β[xi := αi] αr+1

Fischer 1968

  β ∈NT(N,Σ∪ {x
1
,…, x

r
})



Macrond(m−1) → 2m-ACG(2,3)

  S → C(A(a),b)

top-down

  C(x
1
, x

2
)→ C(A(x

1
), x

2
B(ε ))

  S ⇒ C(A(a),b) ⇒ C(A(A(a)),bB(ε ))

  S(Z(Ya))b) :− C(Z ), A(X ).

bottom-up

  C(λx
1
x

2
.Z(Xx

1
)(λz.x

2
(Y(λz.z)))) :− C(Z ), A(X ),B(Y ).

de Groote and Pogodalla 1994



Linear lambda-terms over Σ

    a : o → o (a ∈Σ)

   Γ  M :α → β

   x :α  x :α

   Δ  N :α

   Γ,Δ  MN : β

   Γ, x :α  M : β

   Γ  λx .M :α → β

 (dom(Γ)∩ dom(Δ) = ∅)



Second-order ACGs in (2,3) of width m

  G = (N,Σ,τ ,P ,S)

  τ : N → Types

  τ (S) = o → o

  ord(τ (B)) ≤ 3 for all B ∈N

  |τ (B)| ≤ m for all B ∈N

  B(M) :− B
1
(X

1
),…,B

n
(X

n
)

   where X
1
: τ (B

1
),…, X

n
: τ (B

n
) M : τ (B)



Normal form for 2m-ACG(2,3)

  τ (B) = (o → o)r → (o → o) (0 ≤ r ≤ m −1)

   

P  B(M) implies 

M =β λy
1
…y

r
z. /w

1
/ (y

1
(…(y

r
(/w

r+1/ z))…))

for some w
1
,…,w

r+1 ∈Σ∗

Easy to go to Macro_{nd}(m-1) from here



2m-ACG(2,3) → m-MCFGwn
Cf. Kanazawa and Salvati 2007

  B(M) :− B
1
(X

1
),…,B

n
(X

n
)

  τ (B) = (o → o)r → (o → o)

  τ (B
i
) = (o → o)ri → (o → o)

  
B(t

1
,…, t

r+1) :− B
1
(x

1,1
,…, x

1,r1+1
),…,B

n
(x

n,1
,…, x

n,rn+1
)

  

where M[X
i
:= λy

i ,1
…y

i ,ri
z.x

i ,1
(y

i ,1
(…(y

i ,ri
(x

i ,ri +1
z))…))]

          =β λy
1
…y

r
z. /t

1
/ (y

1
(…(y

r
(/t

r+1/ z))…))

Similar transformation to the general case
The result well-nested



Well-nested mildly context-
sensitive grammar formalisms

m-MCFGwn CCFG(m)

  Macro
nd

(m −1)  2m-ACG
(2,3)

All similar to each other, “context-free”
2m-ACG_{(2,3)} not defined to be similar, but found to be so by analysis



Yet another point of convergence

LOGCFL

CFL

 TAG ≡ CCG ≡ LIG ≡ HG

 

MCTAG ≡ MCFG ≡ HR

≡ OUT(DTWT)

≡ yDT
fc
(REGT) ≡ LUSCG

≡ MG ≡ ACG
(2,4)

 

MCFG
wn

≡ CCFG ≡ Macro
nd

≡ ACG
(2,3)

Not as robust as MCFL, but MCFL_{wn} also interesting


