
The Convergence of Well-Nested
Mildly Context-Sensitive
Grammar Formalisms

Makoto Kanazawa
National Institute of Informatics

Tokyo, Japan

The convergence of mildly context-
sensitive grammar formalisms

Joshi, Vijay-Shanker, and Weir 1991

CSL

CFL
 TAG ≡ CCG ≡ LIG ≡ HG

Title of this talks comes from Joshi et al.’s paper
Four independently developed formalisms found to be equivalent
The class of languages characterized by the four formalisms is robust, which shows its
importance

Mildly context-sensitive
grammar formalisms

• Limited cross-serial dependencies

• constant growth

• polynomial parsing

“… roughly characterize a class of grammars (and
associated languages) that are only slightly more powerful
than context-free grammars (context-free languages)”

Joshi 1985

Called “mildly context-sensitive” because extends CFL only slightly
Three properties to be satisfied by grammars in between CF and CS

Limited cross-serial dependencies

 ww
 anbncndn

 www

 anbncndnen

 MIX?

 MIX = { w ∈{a,b,c}∗ | #
a
(w) = #

b
(w) = #

c
(w) }

Informal, difficult to understand, meant to exclude these languages (at least in the case of
the specific limit with TAGs)

Constant growth

• Weakening of
semilinearity

 {an2

| n ≥ 0 }
 {a2n

| n ≥ 0 }

Simplification of semilinearity for expository purposes

Polynomial parsing

• Containment
in P

• Containment
in LOGCFL

LOGCFL
P

CFL

Much better to say LOGCFL than P

Another point of convergence

MCTAG ≡ MCFG ≡ HR

≡ OUT(DTWT)

≡ yDT
fc
(REGT) ≡ LUSCG

≡ MG ≡ ACG
(2,4)

LOGCFL

CFL

 TAG ≡ CCG ≡ LIG ≡ HG

The “convergence of mildly context-sensitive ...” orignally referred to TAG, CCG, LIG, HG, but
in retrospect, ...
A greater number of equivalent formalisms, more diverse

Multiple context-free grammars

yield = tuple of strings

derivation tree

 S

 A B

 am bn cm dn

 bn dn

 cm am

S(x
1
y

1
x

2
y

2
) :− A(x

1
, x

2
),B(y

1
, y

2
).

A(ε ,ε).

A(ax
1
,cx

2
) :− A(x

1
, x

2
).

B(ε ,ε).

B(by
1
,dy

2
) :− B(y

1
, y

2
).

This is an example of a 2-MCFG.
An m-MCFG allows nonterminals to take up to m arguments.

•

•

• Each xi,j occurs at most once in t1…tr

m-multiple context-free grammars

 G = (N,Σ,P ,S)

 S ∈N(1)

B(t

1
,…, t

r
) :− B

1
(x

1,1
,…, x

1,r1
),…,B

n
(x

n,1
,…, x

n,rn
).

Seki et al. 1991

 t1…t
r
∈(Σ∪ X)∗

 B ∈N(r) ,B
i
∈N(ri)

 L(G) = { w ∈Σ∗∣P S(w) }

N = N(r)

r≤m

ranked alphabet

Second-order ACGs

yield = linear lambda term

derivation tree

 S

 A B

 am bn cm dn

 bn dn

 cm am

S(λz.X(λx
1
x

2
.Y(λy

1
y

2
.x

1
(y

1
(x

2
(y

2
z))))))) :− A(X),B(Y).

A(λw .w(λz.z)(λz.z)).

A(λw .X(λx
1
x

2
.w(λz.a(x

1
z))(λz.c(x

2
z)))) :− A(X).

 λw .w
 λw .w

 /abc/ = λz.(a(b(cz)))

This ACG encodes the example MCFG in the sense that there’s a canonical correspondence
between strings and linear lambda-terms
ACG_{(2,4)} because the type of the yield is up to fourth order

An infinite hierarchy

CFL

1

2
3

m
MCFL = m-MCFL

m≥1

TAL

Each level of the hierarchy is equivalently defined by various other formalisms.
Not by ACG_{(2,4)}, however.

Consensus?

“MCTAGs also belong to the class of MCSGs and
are in fact equivalent to LCFRSs.”

Joshi, Vijay-Shanker, and Weir 1991

“The class of mildly context-sensitive languages
seems to be most adequately approached by
LCFRS.”

Groenink 1997

Because of the robustness of the class of MCFLs, a consensus seems to have emerged.
MCFL = MCSL

Consensus?

“Each MG … can be converted into a linear
context-free rewriting system … In this sense MGs
fall into the class of mildly context-sensitive
grammars …”

Michaelis 1998

Yet another point of convergence

LOGCFL

CFL

 TAG ≡ CCG ≡ LIG ≡ HG

MCTAG ≡ MCFG ≡ HR

≡ OUT(DTWT)

≡ yDT
fc
(REGT) ≡ LUSCG

≡ MG ≡ ACG
(2,4)

MCFG
wn

≡ CCFG ≡ Macro
nd

≡ ACG
(2,3)

The topic of this talk

Well-nested MCFGs

 S(x
1
y

1
y

2
x

2
) :− A(x

1
, x

2
),B(y

1
, y

2
).

 C(x
1
y

1
, y

2
z

1
, z

2
x

2
z

3
) :− A(x

1
, x

2
),B(y

1
, y

2
),C(z

1
, z

2
, z

3
).

 C(z
1
x

1
, x

2
z

2
, y

1
y

2
z

3
) :− A(x

1
, x

2
),B(y

1
, y

2
),C(z

1
, z

2
, z

3
).

 S(x
1
y

1
x

2
y

2
) :− A(x

1
, x

2
),B(y

1
, y

2
).

✓

✓

×

×

Cf. Kuhlmann 2007

Assume all rules are non-permuting.

Two infinite hierarchies

1

2
3

m

MCFL = m-MCFL

m≥1

CFL

1

2

3

m

CFL

TALTAL

MCFL

wn
= m-MCFL

wn
m≥1

Two infinite hierarchies

1

2
3

m

MCFL = m-MCFL

m≥1

CFL

1

2

3

m

CFL

TALTAL

MCFL

wn
= m-MCFL

wn
m≥1

• How different are they?

• Which is a better formalization of “mildly
context-sensitive grammar”?

m-MCFL vs. m-MCFLwn

 RESP
2
∈2-MCFL − 2-MCFL

wn
Seki et al. 1991

 RESP
2
= { a

1
ia

2
i b

1
jb

2
ja

3
i a

4
i b

3
jb

4
j∣i, j ≥ 0 } Weir 1989

 RESP
m
∈m-MCFL − m-MCFL

wn
for m ≥ 2

Seki and Kato 2008

 RESP
m
= { a

1
ia

2
i b

1
jb

2
j …a

2m−1
i a

2m
i b

2m−1
j b

2m
j ∣i, j ≥ 0 }

 RESP
m
∈2m-MCFL

wn

Separation is easy at each level

MCFL vs. MCFLwn

 ww
 anbncndn

 www
 anbncndnen

 MIX?

 {an2

| n ≥ 0 }
 {a2n

| n ≥ 0 }

{ w
1
…w

n
z

n
w

n
z

n−1…z
1
w

1
z

0
w

1
R …w

n
R∣

n ∈,w
i
∈{a,b}+ , z

n
…z

0
∈D∗

1
}

Staudacher 1993
Michaelis 2005?

Much less clear with entire classes
D_1^* Dyck language

Limited cross-serial dependencies

Joshi 1985

Which better captures mildly context-sensitivity

S(x
1
x

2
x

3
) :− A(x

1
, x

2
, x

3
).

A(ax
1
,bx

2
,cx

3
) :− A(x

1
, x

2
, x

3
).

A(ε ,ε ,ε).

TAG is a 2-MCFG.

dependent sets → components of a derived tuple

TAG is a well-nested MCFG.

A mildly context-sensitive grammar
 is a well-nested MCFG.

Limited amount of cross-serial dependencies
→ m-MCFG for some m

Nesting properties → well-nested MCFG

Limited cross-serial dependencies

Pumpability
L is k-pumpable if there is a p satisfying the
following condition:

for all z∈L with |z|≥p, z can be written as

 z = u
0
v

1
u

1
…u

k−1vk
u

k

in such a way that

0 < |v
1
…v

k
|≤ p, and

u
0
v

1
iu

1
…u

k−1vk
i u

k
∈L for all i ≥ 0.

Groenink 1997

Pumpability is related to semilinearity.

Pumping Lemma

Myth. If L is an m-MCFL, then L is 2m-pumpable.

Radzinksi 1991, Groenink 1997, Kracht 2003

Theorem. If L is an m-MCFLwn, then L is
2m-pumpable.

Kanazawa 2009

Revised definition of
mild context-sensitivity

• limited cross-serial dependencies,
reduplication, and parallelism

• finite pumpability

• polynomial parsing

Question. Is every m-MCFL finitely pumpable?

Groenink 1997

Meant to capture a superclass of MCFL, but does it really?
Cross-serial + coordination

Polynomial parsing
fixed language recognition universal recognition

CFG LOGCFL-complete P-complete

m-MCFGwn LOGCFL-complete P-complete

m-MCFG LOGCFL-complete NP-complete (m≥2)

MCFGwn LOGCFL-complete ?

MCFG LOGCFL-complete PSACE-complete/
EXPTIME-complete

Mildly context-sensitive
grammars

Is the notion of mild context-sensitivity most
adequately captured by MCFGs?

Or by well-nested MCFGs?

The convergence of well-nested
mildly context-sensitive grammar

formalisms

m-MCFGwn CCFG(m)

 Macro
nd

(m −1) 2m-ACG
(2,3)

bottom-up top-down

A
⎛
⎝⎜

⎞
⎠⎟

:− B(X),B(Y),C(Z).

Top-down vs. bottom-up

 A → B

 B
 C

 X

 Y
 Z

Well-nested mildly context-
sensitive grammar formalisms

m-MCFGwn CCFG(m)

 Macro
nd

(m −1) 2m-ACG
(2,3)

bottom-up top-down

Upper two non-permuting (viewed from the point of view of the lower two)

Well-nested mildly context-
sensitive grammar formalisms

m-MCFGwn CCFG(m)

 Macro
nd

(m −1) 2m-ACG
(2,3)

Rambow and Satta 1999

LUSCG(m)m-MCFG

Well-nested mildly context-
sensitive grammar formalisms

m-MCFGwn CCFG(m)

 Macro
nd

(m −1) 2m-ACG
(2,3)

de Groote and Pogodalla 2004

Well-nested mildly context-
sensitive grammar formalisms

m-MCFGwn CCFG(m)

 Macro
nd

(m −1) 2m-ACG
(2,3)

dG et al. 200x

Well-nested mildly context-
sensitive grammar formalisms

m-MCFGwn CCFG(m)

 Macro
nd

(m −1) 2m-ACG
(2,3)

Seki and Kato 2008

Well-nested mildly context-
sensitive grammar formalisms

m-MCFGwn CCFG(m)

 Macro
nd

(m −1) 2m-ACG
(2,3)

Do it this way, but no means the only easy way

m-MCFGwn → CCFG(m)
bottom-up

 S → C [1]A[1]aA[2]C [2]bC [3]

top-down

 S(z
1
x

1
ax

2
z

2
bz

3
) :− C(z

1
, z

2
, z

3
), A(x

1
, x

2
).

 C(z
1
x

1
, x

2
z

2
, y

1
y

2
z

3
) :− A(x

1
, x

2
),B(y

1
, y

2
),C(z

1
, z

2
, z

3
).

 (C
[1] ,C [2] ,C [3])→ (C [1]A[1] , A[2]C [2] ,B[1]B[2]C [3])

 S ⇒ C [1]A[1]aA[2]C [2]bC [3] ⇒ C [1]A[1]A[1]aA[2]A[2]C [2]bB[1]B[2]C [3]

Have to keep track of links in the case of LUSCG, but not with CCFG

Extended Dyck set

ED(N, Σ) is the language defined by the following CFG:

N = N(r)

r

ranked alphabet

S → ε
S → aS (a ∈Σ)

S → ′S S

′S → B[1] SB[2]…B[r−1] SB[r] (B ∈N(r))

LL(1)

set of r parentheses

Coupled-context-free grammars

 G = (N,Σ,P ,S)

 S ∈N(1)

 (B
[1] ,…,B[r])→ (β

1
,…,β

r
) β

1
…β

r
∈ED(N,Σ)

• Sentential forms are in ED(N, Σ)

• α0 B1 α1 … αr−1 Br αr ⇒ α0 β1 α1 … αr−1 βr αr if

α1,…,αr−1∈ ED(N, Σ).

Hotz and Pitsch 1996

CCFG(m) → Macrond(m−1)

 S → C(A(a),b)

top-down

 C(x
1
, x

2
)→ C(A(x

1
), x

2
B(ε))

 S ⇒ C(A(a),b) ⇒ C(A(A(a)),bB(ε))

 S → C [1]A[1]aA[2]C [2]bC [3]

top-down

 (C
[1] ,C [2] ,C [3])→ (C [1]A[1] , A[2]C [2] ,B[1]B[2]C [3])

 S ⇒ C [1]A[1]aA[2]C [2]bC [3] ⇒ C [1]A[1]A[1]aA[2]A[2]C [2]bB[1]B[2]C [3]

non-duplicating, non-deleting, non-permuting

Nested terms
NT(N, Σ) is the language defined by the left CFG below:

r times

S → ε
S → aS (a ∈Σ)

S → ′S S

′S → B(S,…,S) (B ∈N(r))

S → ε
S → aS (a ∈Σ)

S → ′S S

′S → B[1] SB[2]…B[r]SB[r+1]

ED(inc(N), Σ)NT(N, Σ)

LL(1)

NT(N,Sigma) and ED(inc(N),Sigma) isomorphic

Non-duplicating macro grammars

 G = (N,Σ,P ,S)

 S ∈N(0)

 B(x
1
,…, x

r
)→ β

•

• Non-duplicating if each xi occurs in β at most
once

• Sentential forms are in NT(N, Σ)

• α0 B(α1,…,αr) αr+1 ⇒ α0 β[xi := αi] αr+1

Fischer 1968

 β ∈NT(N,Σ∪ {x
1
,…, x

r
})

Macrond(m−1) → 2m-ACG(2,3)

 S → C(A(a),b)

top-down

 C(x
1
, x

2
)→ C(A(x

1
), x

2
B(ε))

 S ⇒ C(A(a),b) ⇒ C(A(A(a)),bB(ε))

 S(Z(Ya))b) :− C(Z), A(X).

bottom-up

 C(λx
1
x

2
.Z(Xx

1
)(λz.x

2
(Y(λz.z)))) :− C(Z), A(X),B(Y).

de Groote and Pogodalla 1994

Linear lambda-terms over Σ

 a : o → o (a ∈Σ)

 Γ M :α → β

 x :α x :α

 Δ N :α

 Γ,Δ MN : β

 Γ, x :α M : β

 Γ λx .M :α → β

 (dom(Γ)∩ dom(Δ) = ∅)

Second-order ACGs in (2,3) of width m

 G = (N,Σ,τ ,P ,S)

 τ : N → Types

 τ (S) = o → o

 ord(τ (B)) ≤ 3 for all B ∈N

 |τ (B)| ≤ m for all B ∈N

 B(M) :− B
1
(X

1
),…,B

n
(X

n
)

 where X
1
: τ (B

1
),…, X

n
: τ (B

n
) M : τ (B)

Normal form for 2m-ACG(2,3)

 τ (B) = (o → o)r → (o → o) (0 ≤ r ≤ m −1)

P B(M) implies

M =β λy
1
…y

r
z. /w

1
/ (y

1
(…(y

r
(/w

r+1/ z))…))

for some w
1
,…,w

r+1 ∈Σ∗

Easy to go to Macro_{nd}(m-1) from here

2m-ACG(2,3) → m-MCFGwn
Cf. Kanazawa and Salvati 2007

 B(M) :− B
1
(X

1
),…,B

n
(X

n
)

 τ (B) = (o → o)r → (o → o)

 τ (B
i
) = (o → o)ri → (o → o)

B(t

1
,…, t

r+1) :− B
1
(x

1,1
,…, x

1,r1+1
),…,B

n
(x

n,1
,…, x

n,rn+1
)

where M[X
i
:= λy

i ,1
…y

i ,ri
z.x

i ,1
(y

i ,1
(…(y

i ,ri
(x

i ,ri +1
z))…))]

 =β λy
1
…y

r
z. /t

1
/ (y

1
(…(y

r
(/t

r+1/ z))…))

Similar transformation to the general case
The result well-nested

Well-nested mildly context-
sensitive grammar formalisms

m-MCFGwn CCFG(m)

 Macro
nd

(m −1) 2m-ACG
(2,3)

All similar to each other, “context-free”
2m-ACG_{(2,3)} not defined to be similar, but found to be so by analysis

Yet another point of convergence

LOGCFL

CFL

 TAG ≡ CCG ≡ LIG ≡ HG

MCTAG ≡ MCFG ≡ HR

≡ OUT(DTWT)

≡ yDT
fc
(REGT) ≡ LUSCG

≡ MG ≡ ACG
(2,4)

MCFG
wn

≡ CCFG ≡ Macro
nd

≡ ACG
(2,3)

Not as robust as MCFL, but MCFL_{wn} also interesting

