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1 Introduction

This paper concerns algorithmic learning of context-free languages. The “learn-
ing paradigm” we use is polynomial-time identification in the limit from positive
data and membership queries. The learner receives an infinite stream of positive
examples enumerating the target language, and each time it receives a new pos-
itive example, it makes polynomially many queries to the oracle for the target
language before outputting a hypothesis. The goal is to converge to a correct
grammar for the target language. The availability of the membership oracle
makes it possible to learn some interesting subclasses of the context-free lan-
guages that properly include the regular languages. This paper presents a variant
of previously proposed learning algorithms for three such classes [9,5,6,7].

A key difficulty in learning context-free, as opposed to regular, languages lies
in the relationship between the string sets corresponding to the nonterminals of
a context-free grammar and the generated language. In the case of a regular lan-
guage, states of a minimal DFA for the language correspond to its left quotients.1
A left quotient of a language L is a language of the form u\L = {x | ux ∈ L },
where u is some string. In order to determine whether a string x belongs to
u\L, the learner can just ask the membership oracle whether ux belongs to L.
Furthermore, when L is regular, there are only finitely many left quotients of L,
and this makes it possible to identify the set of left quotients of L in the limit.

In the case of a context-free grammar G, the relationship between the set of
strings derived from a nonterminal A of G and the language L = L(G) of G is
much less straightforward. Unless A is useless, there is a pair of terminal strings
1 In this paper, by a “minimal DFA” for a regular language, we mean one with no dead

state.
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(u, v) such that S ⇒∗
G uAv, so the set LG(A) = {x | A ⇒∗

G x } must be a
subset of u\L/v = {x | uxv ∈ L }. (A set of this latter form is called a quotient
of L.) In general, LG(A) may be a proper subset of

⋂
{u\L/v | S ⇒∗

G uAv },
and it is not clear whether there is anything further that can be said in general
about the relationship between LG(A) and the quotients of L.

The kind of learning algorithm we look at in this paper simply assumes
that the string set associated with each nonterminal of the target grammar G∗
can be expressed as the result of applying certain operations to quotients of
L∗ = L(G∗). We consider three successively larger sets of operations that may
be used in these expressions: (i) the set consisting of intersection only, (ii) the
set of Boolean operations, and (iii) the set consisting of Boolean and regular
operations. With the choice (i), the string sets associated with the nonterminals
are in the intersection closure of Quot(L∗) = {u\L∗/v | (u, v) ∈ Σ∗ ×Σ∗ }, the
set of quotients of L∗. With (ii), they are in the Boolean closure of Quot(L∗).
With (iii), they are in what we call the extended regular closure of Quot(L∗).
When K is a language in one of these classes, the membership of a string x in K
can be determined by making a finite number of queries of the form “uyv ∈ L∗?”,
where (u, v) is an element of some fixed set (depending on K) and y is a substring
of x. As we will see, the fact that the membership problem for the set associated
with a nonterminal reduces to the membership problem for the target language
means that the “validity” of a production can be decided in the limit with the
help of the oracle for the target language.

Before describing our learning algorithms for the three subclasses of the
context-free languages (Section 3), it is perhaps instructive to look at how the
class of regular languages can be learned within the same paradigm, so we start
with the latter.

2 Regular Languages

Let us describe a learning algorithm that identifies an unknown regular language
L∗ from positive data and membership queries. So as to facilitate comparison
with the case of context-free languages, we assume that the learner outputs
right-linear context-free grammars. A context-free grammar G = (N,Σ,P, S),
where N is the set of nonterminals, Σ is the terminal alphabet, P is the set
of productions, and S is the start symbol, is said to be right-linear if each
production in P is either of the form A → aB or of the form A → ε, where
A,B ∈ N and a ∈ Σ. Suppose that G∗ = (N∗, Σ, P∗, S) is the right-linear
context-free grammar corresponding to the minimal DFA for L∗. (This means
that G∗ has no useless nonterminal.) The sets of terminal strings derived from the
nonterminals of G∗ are exactly the nonempty left quotients of L∗. For each B ∈
N∗, let uB be the length-lexicographically first string such that uB\L∗ = {x ∈
Σ∗ | B ⇒∗

G∗
x }.2 We have uS = ε, corresponding to ε\L∗ = L∗. Productions in

2 The choice of the length-lexicographic order is not essential. Other strict total orders
on Σ∗ may be used instead, provided that the empty string comes first.
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P∗ are of one of two forms:

A → aB, where a ∈ Σ and uAa\L∗ = uB\L∗ ,
A → ε, where uA ∈ L∗ .

(The former type of production means that there is a transition labeled a from
the state corresponding to A to the state corresponding to B in the minimal
DFA, and the latter type of production means that A corresponds to a final
state.) The learner’s task is (i) to identify the set Q∗ = {uB | B ∈ N∗ }, and (ii)
to determine, for each u, v ∈ Q∗ and a ∈ Σ, whether ua\L∗ = v\L∗.

For K ⊆ Σ∗, let

Pref(K) = {u ∈ Σ∗ | uv ∈ K for some v ∈ Σ∗ },
Suff(K) = { v ∈ Σ∗ | uv ∈ K for some u ∈ Σ∗ }.

One reasonable strategy for the learner is to work under the assumption that the
available positive data T is large enough that Q∗ ⊆ Pref(T ) and for each pair
of distinct nonempty left quotients of L∗, a string in their symmetric difference
occurs in ({ε} ∪Σ) Suff(T ). (The assumption will eventually be true.) Let ≺ be
the length-lexicographic strict total order on Σ∗. For J,E ⊆ Σ∗, define

Q(J,E) = {u | u ∈ J and for every v ∈ J ,
if v ≺ u, then ({ε} ∪Σ)E ∩ (v\L∗) ̸= ({ε} ∪Σ)E ∩ (u\L∗) }.

Then Q(Pref(T ),Suff(T )) is the set of nonterminals of the grammar the learner
hypothesizes. When we use a string u as a nonterminal in a grammar, we write
⟨⟨u⟩⟩ instead of just u to avoid confusion. A production ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ should be
included in the grammar if and only if ua\L∗ = v\L∗, but this cannot be decided
without knowledge of the identity of L∗, even with the help of the oracle for L∗.
It is again reasonable for the learner to assume that the available positive data
is large enough to provide any witness to the falsity of this identity. Let

P (J,E) = { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ | u, v ∈ J, a ∈ Σ,E ∩ (ua\L∗) = E ∩ (v\L∗) } ∪
{ ⟨⟨u⟩⟩ → ε | u ∈ J, u ∈ L∗ }.

(1)

Then P (Q(Pref(T ),Suff(T )),Suff(T )) is the set of productions of the hypothe-
sized grammar.

The learning algorithm in its entirety is listed in Algorithm 1.3

It is not difficult to see that the output Gi of Algorithm 1 is isomorphic to
G∗ whenever the following conditions hold:4

(i) Q∗ ⊆ Pref(Ti),

3 There is an obvious connection with the work of Angluin [1,2] and many others which
I will not discuss here since this algorithm is not the basis of our generalization to
context-free languages.

4 I write X △ Y for the symmetric difference of X and Y .
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Algorithm 1: Learner for the regular languages.
Data: A positive presentation t1, t2, . . . of L∗ ⊆ Σ∗; membership oracle for

L∗;
Result: A sequence of grammars G1, G2, . . . ;

T0 := ∅;
for i = 1, 2, . . . do

Ti := Ti−1 ∪ {ti}; output Gi := (Ni, Σ, Pi, ⟨⟨ε⟩⟩) where

Ni := Q(Pref(Ti), Suff(Ti));

Pi := P (Ni, Suff(Ti));

end

(ii) for each u, v ∈ Q∗,

u\L∗ ̸= v\L∗ =⇒ ({ε} ∪Σ) Suff(Ti) ∩ ((u\L∗)△ (v\L∗)) ̸= ∅,

(iii) for each u, v ∈ Q∗ and a ∈ Σ,

ua\L∗ ̸= v\L∗ =⇒ Suff(Ti) ∩ ((ua\L∗)△ (v\L∗)) ̸= ∅.

Computing N(Ti) requires membership queries for all elements of
Pref(Ti) ({ε}∪Σ) Suff(Ti), while computing P (Ti) requires membership queries
for some subset of Pref(Ti) ({ε} ∪Σ) Suff(Ti). The number of queries needed to
compute Gi is polynomial in the total lengths of the strings in Ti.

Algorithm 1 satisfies the following properties:

(a) It is set-driven: Gi is determined uniquely by {t1, . . . , ti} (for a fixed L∗ but
across different positive presentations t1, t2, . . . of L∗).

(b) Its conjecture is consistent with the positive data: {t1, . . . , ti} ⊆ L(Gi).5
(c) It updates its conjecture in polynomial time (in the total lengths of the

strings in {t1, . . . , ti}).
(d) There is a “characteristic sample” D ⊆ L∗ whose total size is polynomial

in the representation size of G∗ such that Gi is isomorphic to G∗ whenever
D ⊆ {t1, . . . , ti}.

These characteristics of Algorithm 1 obviously rest on special properties of
the regular languages, and not all of them can be maintained as we move to
learning algorithms for context-free languages. We keep (c), but abandon (a),
(b), and (d) in favor of weaker conditions. Since a context-free language has
no canonical grammar and there is no polynomial bound on the length of the
shortest string generated by a context-free grammar, we cannot hope to maintain
(d), but even the following weakening will not hold of our algorithms:

(d†) There is a “characteristic sample” D ⊆ L∗ whose cardinality is polynomial
in the representation size of G∗ such that L(Gi) = L∗ whenever D ⊆ Ti.

5 This requires a proof. Here it is crucial that we had ({ε} ∪ Σ)E rather than E in
the definition of Q(J,E).
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Let us illustrate the kind of change we must make with another learning
algorithm for the regular languages. The algorithm will no longer be set-driven.
For J,E ⊆ Σ∗, define

P ′(J,E) = { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ | u, v ∈ J, a ∈ Σ, u\L∗ ⊇ a (E ∩ (v\L∗)) } ∪
{ ⟨⟨u⟩⟩ → ε | u ∈ J, u ∈ L∗ }.

(2)

Since u\L∗ ⊇ a (E ∩ (v\L∗)) is equivalent to E ∩ (ua\L∗) ⊇ E ∩ (v\L∗), the
difference between P (J,E) and P ′(J,E) just consists in replacing equality with
inclusion. The algorithm updates the set Ji of prefixes of positive examples only
when the positive examples received so far are incompatible with the previous
conjecture. It is listed in Algorithm 2.

Algorithm 2: Learner for the regular languages, nondeterministic ver-
sion.

Data: A positive presentation t1, t2, . . . of L∗ ⊆ Σ∗; membership oracle for
L∗;

Result: A sequence of grammars G1, G2, . . . ;

T0 := ∅; E0 := ∅; J0 := ∅; G0 := ({⟨⟨ε⟩⟩}, Σ,∅, ⟨⟨ε⟩⟩);
for i = 1, 2, . . . do

Ti := Ti−1 ∪ {ti}; Ei := Ei−1 ∪ Suff({ti});
if Ti ⊆ L(Gi−1) then

Ji := Ji−1;
else

Ji := Pref(Ti);
end
Ni := Q(Ji, Ei);
Pi := P ′(Ni, Ei);
output Gi := (Ni, Σ, Pi, ⟨⟨ε⟩⟩);

end

Suppose that the conditions (i), (ii) above and the following condition (iii′)
hold of Ti:

(iii′) for each u, v ∈ Q∗ and a ∈ Σ,

u\L∗ ̸⊇ a(v\L∗) =⇒ a (Suff(Ti) ∩ (v\L∗))− (u\L∗) ̸= ∅.

The conditions (i) and (ii) mean that Q∗ = Q (Pref(Ti), Ei). There are two cases
to consider.

Case 1. Ti ̸⊆ L(Gi−1). Then Ji = Pref(Ti) and Ni = Q∗. The condition (iii′)
then means that

Pi = P ′(Ni, Ei)

= { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ | u, v ∈ Q∗, a ∈ Σ, u\L∗ ⊇ a (v\L∗) } ∪
{ ⟨⟨u⟩⟩ → ε | u ∈ Q∗, u ∈ L∗ }.
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Fig. 1. The minimal DFA for aba∗ ∪ bb∗ ∪ aa(a∗ ∪ b∗) (left) and its fattening (right).

The learner’s hypothesis Gi is just like G∗ (the right-linear grammar correspond-
ing to the minimal DFA for L∗) except that it may have additional productions.
In general, the finite automaton corresponding to Gi is nondeterministic, but it
accepts exactly the same strings as the minimal DFA. It is in fact the result of
adding to the minimal DFA as many transitions as possible without changing
the accepted language. (Let us call this NFA the fattening of the minimal DFA.)
We have L(Gi) = L∗, and at all stages l ≥ i, the sets Nl and Pl, as well as the
output grammar Gl, will stay constant.

Case 2. Ti ⊆ L(Gi−1). In this case, Ji may be a proper subset of Pref(Ti).
The condition (ii) implies that Ni is in one-to-one correspondence with some
subset of Q∗. That is to say, for each u′ ∈ Ni, there is a u ∈ Q∗ such that
u′\L∗ = u\L∗, and if u′, v′ ∈ Ni and u′\L∗ = v′\L∗, then u′ = v′. The condition
(iii′) implies

P ′(Ni, Ei) = { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ | u, v ∈ Ni, a ∈ Σ, u\L∗ ⊇ a (v\L∗) } ∪
{ ⟨⟨u⟩⟩ → ε | u ∈ Ni, u ∈ L∗ }.

This means that the NFA corresponding to this right-linear grammar is isomor-
phic to a subautomaton of the fattening of the minimal DFA, so we must have
L(Gi) ⊆ L∗. If L(Gi) = L∗, then the learner’s hypothesis will remain the same
at all later stages. If L∗ − L(Gi) ̸= ∅, then Case 1 applies at the earliest stage
l ≥ i such that tl ̸∈ L(Gi).

Example 1. Suppose that the target language is L∗ = aba∗ ∪ bb∗ ∪ aa(a∗ ∪ b∗).
The minimal DFA for L∗ and its fattening are shown in Figure 1. On receiving
{b, aa, ab} (presented in this order), Algorithm 2 outputs the right-linear gram-
mar corresponding to the NFA on the right. On receiving {b, aba}, it outputs
the right-linear grammar corresponding to the NFA in Figure 2. In both cases,
the learner’s hypothesis stays constant at all later stages.

Although Algorithm 2 is not set-driven and the grammar it stabilizes on de-
pends on the order of the positive presentation, its behavior is not unreasonable.
In a way, it tries to postulate as few nonterminals (states) as possible. It pro-
cesses all positive examples immediately and does not engage in any “delaying
trick” [3,4] just to achieve polynomial update time.
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Fig. 2. An NFA for aba∗ ∪ bb∗ ∪ aa(a∗ ∪ b∗).

Instead of (a) and (b), Algorithm 2 satisfies the following weaker conditions:

(a′) If {t1, . . . , ti} ⊆ L(Gi) and ti+1 ∈ {t1, . . . , ti}, then Gi+1 = Gi.
(b′) If {t1, . . . , ti} ̸⊆ L(Gi−1), then {t1, . . . , ti} ⊆ L(Gi).

It is easy to verify (a′). For (b′), if tk = a1 . . . an with aj ∈ Σ (1 ≤ j ≤ n), then
Pref({tk}) ⊆ Ji means that for each j = 0, . . . , n, there is a uj ∈ Ni such that
({ε} ∪Σ)Ei ∩ (uj\L∗) = ({ε} ∪Σ)Ei ∩ (a1 . . . aj\L∗). We have

aj+1(Ei ∩ (vj+1\L∗)) = aj+1(Ei ∩ (a1 . . . aj+1\L∗))

= aj+1Ei ∩ (a1 . . . aj\L∗)

= aj+1Ei ∩ (vj\L∗)

⊆ vj\L∗,

so Pi contains the production ⟨⟨vj⟩⟩ → aj+1⟨⟨vj+1⟩⟩. Since

ε ∈ {ε}Ei ∩ (a1 . . . an\L∗) = {ε}Ei ∩ (vn\L∗),

we have vn ∈ L∗, which implies that ⟨⟨vn⟩⟩ → ε is in Pi as well. So we have a
derivation ⟨⟨ε⟩⟩ = ⟨⟨v0⟩⟩ ⇒∗

Gi
a1 . . . an = tk.

We cannot prove that Algorithm 2 satisfies (d) (or (d†), for that matter) in
the same way we proved (d) for Algorithm 1. This is because when D ⊆ Ti,
where D is a polynomial-sized set satisfying (i), (ii), and (iii′), we may have
Ti ⊆ L(Gi−1), in which case the algorithm may need an additional string from
L∗ −L(Gi) in order to reach a correct grammar. This additional string depends
on the set Ni ⊂ Q∗, of which there are exponentially many possibilities.6 We
can summarize this behavior of Algorithm 2 as follows:

(d′) There is a finite set D ⊆ L∗ whose total size is bounded by a polynomial
in the representation size of G∗ such that whenever D ⊆ {t1, . . . , ti}, there
is a string t, depending on (t1, . . . , ti), of length less than |Q∗| such that
whenever t ∈ {ti+1, . . . , tl}, Gl is constant and isomorphic to the right-
linear grammar corresponding to a subautomaton of the fattening of the
minimal DFA corresponding to G∗.

6 We only need to worry about maximal subsets of Q∗ such that the corresponding
subautomaton of the fattening of the minimal DFA for L∗ fails to accept all strings
in L∗. Still, there may be exponentially many such maximal sets.
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Our learning algorithms for context-free languages resemble Algorithm 2 in
many ways, but also differ in some important respects.

3 Context-Free Languages

Like Algorithms 1 and 2, our algorithms for learning context-free languages
use membership queries to test whether a given string x belongs to the string
set associated with a postulated nonterminal. For this to be possible, we must
assume that the set reduces in polynomial time to the target language L∗. The
reduction must be uniform across different target languages—the learner must
have a representation of a nonterminal without full knowledge of the target
language, and this representation must determine the reduction by which the
string set of the nonterminal reduces to the target language.

Let us formally define the three subclasses of context-free grammars we
are interested in. If G = (N,Σ,P, S) is a context-free grammar, a tuple
(XB)B∈N of sets in P(Σ∗) is a pre-fixed point of G if for each production
A → w0 B1 w1 . . . Bn wn in P , we have

XA ⊇ w0 XB1
w1 . . . XBn

wn.

The tuple (XB)B∈N with XB = Σ∗ for all B ∈ N is the greatest pre-fixed
point of G, and the tuple (LG(B))B∈N is the least pre-fixed point (under the
partial order of componentwise inclusion). A pre-fixed point (XB)B∈N is sound
if XS ⊆ L(G) (or, equivalently, if XS = L(G)). Let Γ be a set of operations on
P(Σ∗) (of varying arity). Then G has the Γ -closure property if G has a sound
pre-fixed point (SPP) each of whose components belongs to the Γ -closure of
Quot(L(G)). Setting Γ to {∩}, we get the class of context-free grammars with
the intersection closure property. With Γ = {∩, ·,∪} (intersection, complement,
and union), we get the context-free grammars with the Boolean closure property.
If we add to this set ∅, ε, and a (a ∈ Σ) (considered the zero-ary operations
producing ∅, {ε}, and {a}, respectively) and the concatenation and Kleene star
operations, we get the context-free grammars with the extended regular closure
property.

Our learning algorithms targeting context-free grammars with the Γ -closure
property use expressions built from query atoms (u, v)◁, where u, v ∈ Σ∗, and
symbols for operations in Γ . These expressions denote subsets of Σ∗ relative to
L∗ in the obvious way:

J(u, v)◁KL∗ = u\L∗/v,

Je1 ∩ e2K
L∗ = Je1K

L∗ ∩ Je2K
L∗ ,

Je1K
L∗ = Σ∗ − Je1K

L∗ ,

Je1 ∪ e2K
L∗ = Je1K

L∗ ∪ Je2K
L∗ ,

J∅KL∗ = ∅,

JεKL∗ = {ε},

JaKL∗ = {a},

Je1e2K
L∗ = Je1K

L∗ Je2K
L∗ ,

q
e∗1

yL∗
= (Je1K

L∗)∗.

An important property of these expressions is the following. If e is an expression,
let Ce = { (u, v) | (u, v)◁ occurs in e }.
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(∗) The truth value of x ∈ JeKL∗ only depends on the truth values of y ∈ u\L∗/v
for substrings y of x and (u, v) ∈ Ce.

3.1 Examples

Let us look at some examples.7 If A is a nonterminal of a grammar G, we often
abuse the notation and write just A for the set LG(A).

Example 2. Consider

L1 = { ambn | m is even and m = n } ∪ { ambn | m is odd and 2m = n }.

This language is generated by the following grammar:

S → T | U, T → ε | aaTbb, U → abb | aaUbbbb.

We have

S = L1 = J(ε, ε)◁KL1 ,

T = { ambn | m is even and m = n } = J(ε, ε)◁ ∩ (aa, bb)◁KL1 ,

U = { ambn | m is odd and 2m = n } = J(ε, ε)◁ ∩ (aa, bbbb)◁KL1 .

So this grammar has the intersection closure property.

Example 3. Consider

L2 = { ambn | m is even and m = n } ∪ { ambn | m is odd and 2m ≤ n }.

This language is generated by the following grammar:

S → T | UB, T → ε | aaTbb, U → abb | aaUbbbb, B → ε | Bb.

We have

S = L2 = J(ε, ε)◁KL2 ,

T = { ambn | m is even and m = n } =
r
(ε, ε)◁ ∩ (aa, bbbb)◁

zL2

,

U = { ambn | m is odd and 2m = n } =
r
(ε, ε)◁ ∩ (aa, bbbb)◁ ∩ (aa, bbb)◁

zL2

,

B = b∗ = J(abb, ε)KL2 .

So this grammar has the Boolean closure property. We can show that the set T
is not in the intersection closure of Quot(L2), and indeed, L2 has no grammar
with the intersection closure property.
7 In all of these examples, the SPP witnessing the relevant closure property is the least

SPP, but there are cases where the witnessing SPP cannot be the least one [5].



10 Makoto Kanazawa

Example 4. Consider

L3 = { ambn | m is even and m ≥ n } ∪ { ambn | m is odd and 2m ≤ n ≤ 3m }.

This language is generated by the following grammar:

S → AT | U, A → ε | Aaa, T → ε | aaTbb,
U → abb | V | aaUbbbb, V → abbb | aaV bbbbbb.

We have

S = L3 = J(ε, ε)◁KL3 ,

A = (aa)∗ = J(ε, aabb)◁KL3

T = { ambn | m is even and m = n } =
r
(ε, ε)◁ ∩ (aa)∗b∗ ∩ (ε, b)◁

zL3

,

U = { ambn | m is odd and 2m ≤ n ≤ 3m } =
q
(ε, ε)◁ ∩ (aa)∗ab∗

yL3
,

V = { ambn | m is odd and n = 3m } =
r
(ε, ε)◁ ∩ (aa)∗ab∗ ∩ (ε, b)◁

zL3

So this grammar has the extended regular closure property. We can show that
L3 has no grammar with the Boolean closure property.

Example 5. Consider

L4 = { ambn | m ≥ n } ∪ { ambn | m ≥ 1 and 2m ≤ n ≤ 3m }.

Unlike the previous three examples, this is not a deterministic context-free lan-
guage. It is generated by the following unambiguous grammar:

S → AT | U, A → ε | Aa, T → ε | aTb,
U → abb | V | aUbb, V → abbb | aV bbb.

We have

S = L4 = J(ε, ε)◁KL4 ,

A = a∗ = J(ε, ab)◁KL4 ,

T = { ambn | m = n } =
r
(ε, ε)◁ ∩

(
ε ∪ (a, bb)◁

)zL4

,

U = { ambn | m ≥ 1 and 2m ≤ n ≤ 3m } =
r
(ε, ε)◁ ∩

(
ab ∪ (ε, ε)◁

)
bb∗

zL4

,

V = { ambn | n = 3m } =
r
(ε, ε)◁ ∩

(
ab ∪ (ε, ε)◁

)
bb∗ ∩ (ε, b)◁

zL4

.

So this grammar has the extended regular closure property. Again, we can show
that L4 has no grammar with the Boolean closure property.

Example 6. The inherently ambiguous language

{ albmcndq | l,m, n, q ≥ 1 and l = n ∨m > q }

does not have a grammar with the extended regular closure property [7].
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3.2 Algorithm

Let us describe our algorithm for learning context-free languages, leaving the set
Γ of available operations as an unspecified parameter. The set Γ may be any
subset of the Boolean and regular operations, as long as it contains intersection.
In this algorithm, quotients of L∗ will play a role similar to the role left quo-
tients played in Algorithm 2. An important difference is that since a context-free
language has infinitely many quotients (unless it is regular), the learner cannot
identify the set of all quotients, even in the limit. It tries to identify a superset
of the set of quotients the target grammar “uses”, so to speak, and this is done
by a strategy similar to Algorithm 2.

Since the learner can only postulate a polynomial number of nonterminals,
we place an arbitrary finite bound k on the number of occurrences of symbols
for operations in the representation of a nonterminal. Since polynomially many
string pairs (u, v) are available as building blocks of nonterminals, this is a
necessary restriction.

We also have to place a suitable syntactic restriction on nonterminals
that ensures that their denotations relative to L∗ are included in Sub(L∗) =
{x | for some (u, v), uxv ∈ L∗ }. We call a nonterminal obeying this restriction
guarded :

– (u, v)◁ is guarded.
– If e1 is guarded, so is e1 ∩ e2.
– If e1 and e2 are guarded, so is e1 ∪ e2.

If C is a finite subset of Σ∗ × Σ∗, we write Ek(C, Γ ) for the set of all guarded
expressions built up from query atoms in { (u, v)◁ | (u, v) ∈ C } using operations
in Γ up to k times.8

As for productions, we place a bound r on the number of occurrences of
nonterminals and a bound s on the length of contiguous terminal strings on the
right-hand side of a production. So a production postulated by the learner is of
the form

A → w0 B1 w1 . . . Bn wn,

where n ≤ r and |wi| ≤ s (0 ≤ i ≤ n).9 The notation ⟨Σ≤s⟩≤r+1 is used to
denote the set of possible choices of (w0, w1, . . . , wn). Note that if E ⊆ Σ∗ is
closed under substring, then the set

Σ≤s(EΣ≤s)≤r =
⋃

{w0 E w1 . . . E wn | (w0, w1, . . . , wn) ∈ ⟨Σ≤s⟩≤r+1 }

is also closed under substring, and is a superset of E.

8 A reasonable optimization is to put expressions in some suitable “normal form”, to
avoid including a large number of equivalent expressions in Ek(C, Γ ).

9 An alternative is to allow arbitrary terminal strings to surround nonterminals on the
right-hand side of productions, as long as they are “observed” in the positive data
[5,6,7].
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Define a strict total order ≺2 on Σ∗ ×Σ∗ by

(u1, u2) ≺2 (v1, v2) ⇐⇒ u1 ≺ v1 ∨ (u1 = v1 ∧ u2 ≺ v2).

We write ⪯2 for the reflexive counterpart of ≺2. For J ⊆ Σ∗ ×Σ∗ and E ⊆ Σ∗,
let

Qr,s(J,E) =

{ (u1, u2) | (u1, u2) ∈ J and for each (v1, v2) ∈ J ,
if (v1, v2) ≺2 (u1, u2), then

(Σ≤s(EΣ≤s)≤r) ∩ (v1\L∗/v2) ̸= (Σ≤s(EΣ≤s)≤r) ∩ (u1\L∗/u2) }.

For K,E ⊆ Σ∗ and a set N of expressions, define

Sub(K) = { y ∈ Σ∗ | uyv ∈ K for some (u, v) ∈ Σ∗ ×Σ∗ },
Con(K) = { (u, v) ∈ Σ∗ ×Σ∗ | uyv ∈ K for some y ∈ Σ∗ },

P r,s(N,E) = {A → w0 B1 w1 . . . Bn wn |
0 ≤ n ≤ r,A,B1, . . . , Bn ∈ N,

(w0, w1, . . . , wn) ∈ ⟨Σ≤s⟩≤r+1,

JAKL∗ ⊇ w0 (E ∩ JB1K
L∗)w1 . . . (E ∩ JBnKL∗)wn }.

The inclusion JAKL∗ ⊇ w0 (E∩JB1K
L∗)w1 . . . (E∩JBnKL∗)wn in the definition of

P r,s(N,E) is analogous to the inclusion u\L∗ ⊇ a (E ∩ (v\L∗)) in the definition
of P ′(J,E) in (2).

With the necessary definitions in place, we can list the learning algorithm in
Algorithm 3.

By the property (∗) of expressions used by the learner, membership queries
that are needed to compute Ni and Pi are all of the form “uyv ∈ L∗?”, where
(u, v) ∈ Con(Ti) and y ∈ Σ≤s(Sub(Ti)Σ

≤s)≤r. There are only polynomially
many of them (in the total lengths of the strings in Ti).

Algorithm 3 is by no means capable of learning all context-free languages.
What is the class of context-free languages that the algorithm can learn? Recall
that the denotation of each nonterminal B (relative to L∗) is a subset of Sub(L∗).
Because of how P r,s(N,E) is defined, if Algorithm 3 stabilizes on a grammar
Gi, then all its productions A → w0 B1 w1 . . . Bn wn are valid in the sense that

JAKL∗ ⊇ w0 JB1K
L∗ w1 . . . JBnKL∗ wn , (3)

since
⋃

i Ei = Sub(L∗). This means that the tuple of sets (JBKL∗)B∈Ni
is a pre-

fixed point of Gi. So LGi(B) ⊆ JBKL∗ . In particular, L(Gi) = LGi((ε, ε)
◁) ⊆

J(ε, ε)◁KL∗ = L∗. The converse inclusion can be shown by appealing to the fact
that Algorithm 3 satisfies the property (b′), which can be proved in the same
way as with Algorithm 2. If L∗ ̸⊆ L(Gi), then at the earliest stage l > i such that
tl ̸∈ L(Gi), we must have Gl ̸= Gi, since tl ∈ L(Gl) by (b′). This contradicts
the assumption that Algorithm 3 stabilizes on Gi. So we have L(Gi) = L∗ and
(JBKL∗)B∈Ni

is an SPP of Gi. This shows that Gi has the Γ -closure property.
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Algorithm 3: Learner for a subclass of the context-free languages.
Parameters: Positive integers r, s, k
Data: A positive presentation t1, t2, . . . of L∗ ⊆ Σ∗; membership oracle for

L∗;
Result: A sequence of grammars G1, G2, . . . ;

T0 := ∅; E0 := ∅; J0 := ∅; G0 := ({(ε, ε)◁}, Σ,∅, (ε, ε)◁);
for i = 1, 2, . . . do

Ti := Ti−1 ∪ {ti}; Ei := Ei−1 ∪ Sub({ti});
if Ti ⊆ L(Gi−1) then

Ji := Ji−1;
else

Ji := Con(Ti);
end
Ni := Ek(Q

r,s(Ji, Ei), Γ );
Pi := P r,s(Ni, Ei);
output Gi := (Ni, Σ, Pi, (ε, ε)

◁);
end

Theorem 7. If, given a positive presentation of L∗ and the membership oracle
for L∗, Algorithm 3 stabilizes on a grammar G, then L(G) = L∗ and G has the
Γ -closure property.

We have seen that Algorithm 3 can only learn a context-free language that
has a grammar with the Γ -closure property. Conversely, if L∗ has a grammar G∗
with the Γ -closure property, let r and s be the maximal number of nonterminals
and the maximal length of contiguous terminal strings, respectively, on the right-
hand side of productions of G∗. Let k be the least number such that G∗ has an
SPP each of whose components is denoted by a guarded expression containing
at most k operations in Γ . Then with this choice of r, s, k, one can show that
Algorithm 3 learns L∗. The proof is similar to the proof for Algorithm 2, with
some additional complications.10

Let Q∗ be the set of pairs (u, v) of strings such that the query atom (u, v)◁

occurs in expressions for components of the SPP for G∗. So if N∗ is the set of
nonterminals of G∗, there is an expression eB ∈ Ek(Q∗, Γ ) for each B ∈ N∗ such
that (JeBKL∗)B∈N∗ is an SPP of G∗. We can safely assume that if (u, v) ∈ Q∗ and
(u′, v′) ≺2 (u, v), then u′\L∗/v

′ ̸= u\L∗/v. In particular, if (u1, v1) and (u2, v2)
are distinct elements of Q∗, we have u1\L∗/v1 ̸= u2\L∗/v2.

Now assume that t1, t2, . . . is a positive presentation of L∗, and suppose
Ti = {t1, . . . , ti} is such that Q∗ ⊆ Con(Ti).

Case 1. Ti ̸⊆ L(Gi−1). Then Q∗ ⊆ Ji = Con(Ti). At each stage l ≥ i, we
have Q∗ ⊆ Jl, and for each (u, v) ∈ Q∗, there is a (u′, v′) ∈ Qr,s(Jl, El) such
10 Unlike the algorithms in [9,5,6,7], Algorithm 3 tries to avoid using different query

atoms that denote the same quotient of L∗. This should be compared with Leiß’s [8]
algorithm for the case Γ = {∩}, which tries to minimize the number of nonterminals
used.
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that (u′, v′) ⪯2 (u, v) and

(Σ≤s(ElΣ
≤s)≤r) ∩ (u′\L∗/v

′) = (Σ≤s(ElΣ
≤s)≤r) ∩ (u\L∗/v). (4)

For each B ∈ N∗, let e′B be the result of replacing each query atom (u, v)◁ in eB
by (u′, v′)◁. Then e′B ∈ Nl for each B ∈ N∗, and (4) implies

(Σ≤s(ElΣ
≤s)≤r) ∩ JeB′KL∗ = (Σ≤s(ElΣ

≤s)≤r) ∩ JeBKL∗ . (5)

For each production
A → w0 B1 w1 . . . Bn wn

of G∗, we have
JeAKL∗ ⊇ w0 JeB1

KL∗ w1 . . . JeBn
KL∗ wn,

since (JeBKL∗)B∈N∗ is an SPP of G∗. Since (w0, w1, . . . , wn) ∈ ⟨Σ≤s⟩≤r+1, we
have

(Σ≤s)(ElΣ
≤s)≤r ∩ JeAKL∗ ⊇ w0 (El ∩ JeB1K

L∗)w1 . . . (El ∩ JeBnKL∗)wn.

But since El ⊆ Σ≤s(ElΣ
≤s)≤r, this together with (5) implies

(Σ≤s)(ElΣ
≤s)≤r ∩ JeA′KL∗ ⊇ w0 (El ∩

q
eB′

1

yL∗
)w1 . . . (El ∩

q
eB′

n

yL∗
)wn,

so
eA′ → w0 eB′

1
w1 . . . eB′

n
wn

is a production in Pl. Since (ε, ε)′ = (ε, ε) and ((ε, ε)◁)′ = (ε, ε)◁, this means
that Gl contains a homomorphic image of G∗, and so L∗ ⊆ L(Gl). It follows that
for all l ≥ i, we have Jl = Ji and Qr,s(Jl, El) ⊆ Ji. Since Qr,s(J,E) is monotone
in E, we see that Qr,s(Jl, El) eventually stabilizes, i.e., there is an m ≥ i such
that for all l ≥ m, Qr,s(Jl, El) = Qr,s(Jm, Em). Then we have Nl = Nm and
Pl = P r,s(Nm, El) for all l ≥ m. Since P r,s(N,E) is antitone in E, it follows
that Pl, and hence Gl, eventually stabilize. By Theorem 7, the grammar that
the algorithm stabilizes on is a grammar for L∗.

Case 2. Ti ⊆ L(Gi−1). We distinguish two cases.
Case 2.1. Tl ⊆ L(Gl−1) for all l ≥ i. Then Jl = Ji = Ji−1 for all l ≥ i, and by

a reasoning similar to Case 1, Gl will eventually stabilize to a correct grammar
for L∗.

Case 2.2. Tl ̸⊆ L(Gl−1) for some l ≥ i. Then we are in Case 1 at the earliest
stage l ≥ i when this happens.

Theorem 8. Suppose that G∗ = (N∗, Σ, P∗, S) is a context-free grammar with
the Γ -closure property such that if B → w0 B1 w1 . . . , Bn wn is a production in
P∗, then n ≤ r and |wj | ≤ s (0 ≤ j ≤ n). Let L∗ = L(G∗). Given a positive
presentation of L∗ and the membership oracle for L∗, Algorithm 3 converges to
a grammar for L∗ with the Γ -closure property.
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Let us close by stating a data efficiency property of Algorithm 3 in the style
of (d′). Let D be the subset of L∗ with the least cardinality such that Q∗ ⊆
Con(D). Then |D| ≤ |Q∗| ≤ k|N∗|, but there may be strings in D whose length
is exponential in the representation size of G∗. Suppose D ⊆ Ti = {t1, . . . , ti}.

Case 1. If Ti ̸⊆ L(Gi−1), then the size of Ji = Con(Ti) is polynomial in the
total lengths of the strings in Ti. We need additional positive examples to make
the set of nonterminals postulated by the learner equal Ek(Qr,s(Ji,Sub(L∗)), Γ ).
We need at most

(|Ji|
2

)
such positive examples. We also need positive examples

to eliminate any productions that are not valid in the sense of (3). The number
of such productions is at most polynomial in |Ji|. We can combine these two
types of positive examples and present them in any order, interspersed with
other positive examples, to force the learner to stabilize on a correct grammar.

Case 2. Ti ⊆ L(Gi−1). Then Ji may be a proper subset of Con(Ti). As soon
as we have Tl ̸⊆ L(Gl−1) (i ≤ l), we will be in Case 1. Until this happens,
polynomially many positive examples (in the size of Ji) suffice to make the set
of nonterminals postulated by the learner equal Ek(Qr,s(Ji,Sub(L∗)), Γ ) and
to eliminate all invalid productions formed with these nonterminals. When Tl

(l ≥ i) contains these positive examples and we are still in Case 2, we have two
possibilities.

Case 2.1. L∗ ⊆ L(Gl). In this case, Gl has already stabilized.
Case 2.2. L∗ ̸⊆ L(Gl). Then any positive example not in L(Gl) puts us in

Case 1.
Summarizing, all we seem to be able to say about Algorithm 3 is that it

satisfies the following complex property:

(d†′) There exists a finite subset D of L∗ whose cardinality is bounded by a
polynomial in the representation size of G∗ such that

– whenever D ⊆ {t1, . . . , ti} ⊆ L∗, one can find a finite subset D′ of L∗,
depending on (t1, . . . , ti), whose cardinality is polynomial in the total
lengths of the strings in {t1, . . . , ti} such that
• whenever D′ ⊆ {ti+1, . . . , tk} ⊆ L∗, one can find a string t ∈ L∗,

depending on (t1, . . . , tk), such that
∗ whenever t ∈ {tk+1, . . . , tl} ⊆ L∗, one can find a finite subset
D′′ of L∗, depending on (t1, . . . , tl), whose cardinality is poly-
nomial in the total lengths of the strings in {t1, . . . , tl} such
that
· whenever D′′ ⊆ {tl+1, . . . , tm} ⊆ L∗, the output Gm of Al-

gorithm 3 is constant and is a correct grammar for L∗.
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